so sánh A và B
\(A=\frac{10^7+5}{10^7-8}\) và \(B=\frac{10^5+6}{10^5-7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
Lời giải:
\(A=\frac{10^7-5}{10^7-8}=\frac{10^7-8+3}{10^7-8}=1+\frac{3}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta thấy: \(\frac{3}{10^7-8}=\frac{30}{10^8-80}> \frac{30}{10^8-7}> \frac{13}{10^8-7}\)
\(\Rightarrow 1+\frac{3}{10^7-8}> 1+\frac{13}{10^8-7}\Rightarrow A>B\)
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(\frac{13}{10^7-7}>\frac{13}{10^8-7}\Rightarrow\frac{10^7+5}{10^7-8}>\frac{10^8+6}{10^8-7}\)
linh ới mi còn kém lắm tui lm đc rùi nha mà ko cần nhìn cái j nha ^.^ hề hề
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8}{10^7-8}+\frac{13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7}{10^8-7}+\frac{13}{10^8-7}\)
Dễ thấy 107 - 8 < 108 - 7 \(\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow A>B\)
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
a=(10^7 -8 +13)/(10^7 - 8) = 1+ 13/(10^7 - 8)
b = (10^5 +6)/(10^5 -7) = (10^5-7+13)/(10^5 -7) = 1 + 13/(10^5-7)
vay b>a