Cho đường tròn (O;R)và điểm A cố định ngoài đg tròn .qua A kẻ hai tiếp tuyến AM . AN tới đg tròn (M.N là hai tiếp điểm ). Một đường thẳng d đi qua A cắt đg tròn (O;R)tại B và C(AB<AC) Gọi I là trung điểm BC . Đường thẳng qua B song song AM cắt MN tại E
a. Cmr IE song song MC
Ta có : góc AMO = góc ANO = 900 (t/c tiếp tuyến)
Mặt khác I là tđ BC => OI vuông góc BC (t/c đường kính và dây) => góc AIO = 900
=> 5 điểm A, M, O, I, N cùng nằm trên một đường tròn
Ta có góc MAI = góc MNI (AMIN nt), mà góc EBI = góc MAI (đồng vị, do AM // BE) => góc MNI = góc EBI hay góc ENI = góc EBI
=> Tứ giác NBEI nội tiếp => góc BNE = góc BIE. Mà góc BNE = góc BCM (cùng chắn cung MB trong (O))
=> góc BIE = góc BCM => IE // CM