hda htbc là gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
mà góc B=60 độ
nên ΔABD đều
b: góc CAD=90-60=30 độ=góc HAD
=>AD là phân giác của góc HAC
=>DH/AH=DC/AC
mà AH<AC
nên DH<DC
a: Xét ΔAHC vuông tại H và ΔHDC vuông tại D có
\(\widehat{C}\) chung
Do đó: ΔAHC\(\sim\)ΔHDC
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
Suy ra: \(\widehat{BAD}=\widehat{BHD}=90^0\)
hay DH\(\perp\)BC
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: AK=HC
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
=>ΔBKC cân tại B
mà BD là phân giác
nên BD là đường trung trực của KC
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HA=HD
HB chung
Do đó:ΔABH=ΔDBH
Suy ra: BA=BD
hay ΔBAD cân tại B
b: Xét ΔCAD có
CH là đường trung tuyến
DM là đường trung tuyến
AN là đường trung tuyến
CH cắt DM tại G
Do đó: A,G,N thẳng hàng
Sửa đề: ΔABC vuông tại C
a) Xét ΔAHC vuông tại H và ΔAHD vuông tại H có
AH chung
HC=HD(gt)
Do đó: ΔAHC=ΔAHD(hai cạnh góc vuông)
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
a) Xét ΔAHC vuông tại H và ΔDHC vuông tại H có
CH chung
HA=HD(gt)
Do đó: ΔAHC=ΔDHC(hai cạnh góc vuông)
b) Ta có: AH=HD(gt)
mà H nằm giữa A và D(gt)
nên H là trung điểm của AD
Xét ΔDAK có
H là trung điểm của AD(gt)
C là trung điểm của KD(gt)
Do đó: HC là đường trung bình của ΔDAK(Định nghĩa đường trung bình của tam giác)
Suy ra: HC//AK và \(HC=\dfrac{AK}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay AK//BC(đpcm)