cm bất đẳng thức:x/y+y/x>=2(x,y cùng dấu)_
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+1\ge xy+x+y\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\left(1\right)\)
\(y^2+1\ge2\sqrt{y^2}=2y\left(2\right)\)
\(x^2+1\ge2\sqrt{x^2}=2x\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\Leftrightarrow x^2+y^2+1\ge xy+x+y\)
Dấu "=" khi \(x=y\)
áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\left(đpcm\right)\)
Cách khác:
Đặt \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
\(A=\dfrac{x^2+y^2}{xy}\)
Lại có:\(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Rightarrow A=\dfrac{x^2+y^2}{xy}\ge\dfrac{2xy}{xy}=2\left(đpcm\right)\)
Dấu "=" xảy ra khi x=y
Biến đổi tương đương:
\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
Biến đổi tương đương:
\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
A no thơ quay nhưng lại không hay:P(Another way)
\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)
\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)
Đẳng thức xảy ra khi x =y = z
P/s: cách này làm màu thôi :D
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
Ta có suy ra
(x^2+y^2)/xy>=2 suy ra x^2 +y^2 >=2xy
chuyển 2xy sang ta có
x^2 +Y^2-2xy>=0 suy ra (x-y) ^2 >=0 với mọi x ,y
dấu "=" xảy ra khi
x-y=0 suy ra x= y
ĐPCM
giả sử x/y+y/x>/2
<=> x^2+y^2/xy>/2
<=> x^2+y^2>/2xy
<=>x^2-2xy+y^2>/0
<=> (x-y)^2>/0 (đúng)
vậy x/y+y/x>/0
dấu "=" xảy ra <=> x-y=0<=> x=y