x.(x+15)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 0
b) x - 15 =75
x=15+75=
x=90
c) ( x - 7 ) = 114+0
x - 7 = 114
x=114+7
x=121
d) ( x - 15 ) = 0:2015
x - 15 =0
x=15+0
x=15
e)( x - 15 ) =0:13
x - 15 =0
x=15+0
x+15
TL :
( 15 x 15 ) : 2 x ( 15 x 15 ) : 2 x ( 15 x 15 ) : 2 + ( 0 + 1 + 2 + 2 + 3 + 45 ) x 0
= 0
=> vì : tất cả số nào nhân vs 0 đều = 0
_HT_
Trả lời:
15 x 0 = 0
0 x 15 = 0
0 : 15 = 0
15 : 0 = không tìm được kết quả
15 x 0 = 0 0 : 15 = 0
0 x 15 = 0 15 : 0 = ( không thể chia )
A.\(\left(x-15\right).15=0\)
\(x-15=0:15\)
\(x-15=0\)
\(x=15+0\)
\(x=15\)
B.\(32\left(x-10\right)=32\)
\(x-10=32:32\)
\(x-10=1\)
\(x=10+1\)
\(x=11\)
`a) `
`(x-15)xx15=0`
`<=> x-15 = 0 : 15`
`<=> x-15 = 0`
`<=> x = 0 + 15`
`<=> x =15`
`b)`
`32.(x-10)=32`
`<=> x - 10 = 32:32`
`<=>x-10=1`
`<=> x = 1+10`
`<=> x =11`
`c)`
`(x-5).(x-7)=0`
`<=>` \(\left[ \begin{array}{l}x-5 = 0\\x-7=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=5\\x=7\end{array} \right.\)
`d)`
`(x-35)xx35=35`
`<=> x - 35 = 35:35`
`<=> x - 35 = 1`
`<=> x = 1+35`
`<=> x = 36`
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3
`@` `\text {Ans}`
`\downarrow`
`c)`
`( 34 - 2x ) . ( 2x - 6 ) = 0`
`=>`\(\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=34\div2\\x=6\div2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
Vậy, `x \in {17; 3}`
`d)`
`( 2019 - x ) . ( 3x - 12 ) =0` `?`
`=>`\(\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019-0\\3x=12\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=12\div3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
Vậy, `x \in {2019; 4}`
`e) `
`57 . ( 9x - 27 ) = 0`
`=>`\(9x-27=0\div57\)
`=> 9x - 27 = 0`
`=> 9x = 27`
`=> x = 27 \div 9`
`=> x = 3`
Vậy, `x = 3`
`f)`
`25 + ( 15 - x ) = 30`
`=> 15 - x = 30 - 25`
`=> 15 - x = 5`
`=> x = 15 -5 `
`=> x = 10`
Vậy, `x = 10`
`g) `
`43 - ( 24 - x ) = 20`
`=> 24 - x = 43 - 20`
`=> 24 - x = 23`
`=> x = 24 - 23`
`=> x = 1`
Vậy, `x = 1`
`h) `
`2 . ( x - 5 ) - 17 = 25`
`=> 2 ( x - 5) = 25+17`
`=> 2 ( x - 5) = 42`
`=> x - 5 = 42 \div 2`
`=> x - 5 = 21`
`=> x = 21 + 5`
`=> x = 26`
Vậy, `x = 26`
`i)`
`3 . ( x + 7 ) - 15 = 27`
`=> 3(x + 7) = 27 + 15`
`=> 3(x + 7) = 42`
`=> x +7 = 42 \div 3`
`=> x + 7 = 14`
`=> x = 14 - 7`
`=> x = 7`
Vậy, `x = 7`
`j)`
`15 + 4 . ( x - 2 ) = 95`
`=> 4(x - 2) = 95 - 15`
`=> 4(x - 2) = 80`
`=> x - 2 = 80 \div 4`
`=> x - 2 = 20`
`=> x = 20 + 2`
`=> x = 22`
Vậy, `x = 22`
`k)`
`20 - ( x + 14 ) = 5`
`=> x + 14 = 20 - 5`
`=> x + 14 = 15`
`=> x = 15 - 14`
`=> x = 1`
Vậy, `x = 1`
`l) `
`14 + 3 . ( 5 - x ) = 27`
`=> 3(5 - x) = 27 - 14`
`=> 3(5 - x) = 13`
`=> 5 - x = 13 \div 3`
`=> 5 - x = 13/3`
`=> x = 5- 13/3`
`=> x = 2/3`
Vậy, `x = 2/3.`
`@` `\text {Kaizuu lv uuu}`
a) \(5\left(x-7\right)=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
b) \(25\left(x-4\right)=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) 5.(x-7)=0⇔x-7=0⇔x=7
b) 25(x-4)=0⇔x-4=0⇔x=4
c) (34-2x).(2x-6)=0
⇔ 34-2x=0 hoặc 2x-6=0
⇔2x=34 hoặc 2x=6
⇔ x=17 hoặc x=3
d) (2019-x).(3x-12)=0
⇔ 2019-x=0 hoặc 3x-12=0
⇔ x=2019 hoặc x=4
e) 57.(9x-27)=0
⇔ 9x-27=0
⇔ x=3
f) 25+(15-x)=30
⇔ 15-x=5
⇔ x=10
g) 43-(24-x)=20
⇔ 24-x=23
⇔ x=1
h) 2.(x-5)-17=25
⇔ 2(x-5)=42
⇔x-5=21
⇔ x=26
i) 3(x+7)-15=27
⇔ 3(x+7)=42
⇔ x+7=14
⇔ x=7
j) 15+4(x-2)=95
⇔ 4(x-2)=80
⇔ x-2=20
⇔ x=22
k) 20-(x+14)=5
⇔ x+14=15
⇔ x=1
l) 14+3(5-x)=27
⇔ 3(5-x)=13
⇔ 5-x=13/3
⇔ x=5-13/3
⇔ x=2/3
đúng rùi
TL:
Trường hợp 1:
x + 15 = 0
x = 0 - 15
x = -15
Trường hợp 2:
Vì x nhân vs bất kì số nào đều = 0 nên ta coi cụm (x + 15) là A
x . A = 0
x = 0 : A
x = 0
Vậy x = -15 hoặc x = 0
HT