Giúp em với mn ơi thứ6 em nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c mình làm rồi: Mn ơi, hướng dẫn em cách để giống mẫu đi ạ! - Hoc24
\(d,\dfrac{x}{x^3-27}=\dfrac{x}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x\left(x-3\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x+2}{x^2-6x+9}=\dfrac{x+2}{\left(x-3\right)^2}=\dfrac{\left(x+2\right)\left(x^2+3x+9\right)}{\left(x-3\right)^2\left(x^2+3x+9\right)}\\ \dfrac{x-1}{x^2+3x+9}=\dfrac{\left(x-1\right)\left(x-3\right)^2}{\left(x-3\right)^2\left(x^2+3x+9\right)}\)
\(f,\dfrac{x+2}{x^2-3x+2}=\dfrac{x+2}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(x+2\right)\left(2x-3\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\\ \dfrac{x}{-2x^2+5x-3}=\dfrac{-x}{\left(2x-3\right)\left(x-1\right)}=\dfrac{-x\left(x-2\right)}{\left(2x-3\right)\left(x-1\right)\left(x-2\right)}\\ \dfrac{2x+1}{-2x^2+7x-6}=\dfrac{-\left(2x+1\right)}{\left(x-2\right)\left(2x-3\right)}=\dfrac{-\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(2x-3\right)}\)
\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)}{\left(2x+a\right)\left(3x-2a\right)}\)
\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{a-x}{\left(x+2a\right)\left(3x-2a\right)}\)
Do đó ta quy đồng:
\(\dfrac{a+x}{6x^2-ax-2a^2}=\dfrac{\left(a+x\right)\left(x+2a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)
\(\dfrac{a-x}{3x^2+4ax-4a^2}=\dfrac{\left(a-x\right)\left(2x+a\right)}{\left(x+2a\right)\left(2x+a\right)\left(3x-2a\right)}\)
b, \(cos^25x-sin^2x=0\)
\(\Leftrightarrow cos^25x-cos^2\left(x-\dfrac{\pi}{2}\right)=0\)
\(\Leftrightarrow\left[cos5x-cos\left(x-\dfrac{\pi}{2}\right)\right]\left[cos5x+cos\left(x-\dfrac{\pi}{2}\right)\right]=0\)
\(\Leftrightarrow-4sin\left(3x-\dfrac{\pi}{4}\right).sin\left(2x+\dfrac{\pi}{4}\right).cos\left(3x-\dfrac{\pi}{4}\right).cos\left(2x+\dfrac{\pi}{4}\right)=0\)
\(\Leftrightarrow-sin\left(6x-\dfrac{\pi}{2}\right).sin\left(4x+\dfrac{\pi}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(6x-\dfrac{\pi}{2}\right)=0\\sin\left(4x+\dfrac{\pi}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-\dfrac{\pi}{2}=k\pi\\4x+\dfrac{\pi}{2}=k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=-\dfrac{\pi}{8}+\dfrac{k\pi}{4}\end{matrix}\right.\)
giúp gì , có cái gì đâu mà giúp