1.Tìm nghiệm đa thức\(f\left(x\right)=x^2+8x+23\)
2.Chứng tỏ đa thức sau ko có nghiệm\(^{x^2+4x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Đặt \(f\left(x\right)=0\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
--> hai nghiệm \(x=-1;x=5\) là hai nghiệm của đa thức \(f\left(x\right)\)
đặt f(x) = 0
\(\Leftrightarrow x^2-4x-5=0\\ \Leftrightarrow x^2+x-5x-5=0\\ \Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Vậy x = 5 và x = -1 là 2 nghiệm của f(x)
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
Với x = -1
Ta có: f(-1) = (-1)2 - 4.(-1) - 5 = 0
Với x = 5
Ta có: f(x) = 52 - 4.5 -5 = 0
Vậy x = -1, x = 5 là nghiệm của đa thức f(x)
Thay x = -1 vào đa thức f(x) ta đc:
f(1) = (-1)2 - 4.(-1) - 5 = 1 + 4 -5 = 0
Vậy x = -1 là nghiệm của đa thức f(x) = x2 - 4x - 5
Thay x = 5 vào đa thức f(x) ta đc:
f(5) = 52 - 4.5 - 5 = 25 - 20 - 5 = 0
Vậy x = 5 là nghiệm của đa thức f(x) = x2 - 4x - 5
x^2 + 4x + 5
= x^2 + 2x +2x +4 + 1
= x(x+2) + (2x+4)+1
= x(x+2) + 2(x+2) +1
= (x+2)^2 + 1
Có (x+2)^2 >= 0 với mọi x
=> (x+2)^2 + 1 >= 1 > 0
=> (x+2)^2 + 1 > 0
hay x^2 + 4x +5 > 0
Vậy đã thức trên vô nghiệm
ban xem cong thuc giai pt bac 2 lop 9 thi bai nao dang nay ban cung giai dc
hay chiu kho tim hieu bạn se giai dc het ok chuc hoc joi