Cho điểm A ở ngoài đường tròn (O ;R). Kẻ hai tiếp tuyến AT, AT' và cát tuyến ABC với (O ;R). gọi H là trung điểm của BC ; TT' cắt OA và BC lần lượt tại I và J. a) Chứng minh : AT² = AI. AO b) Chứng minh các tam giác AIJ và AHO đồng dạng. Từ đó suy ra tích AJ. AH có giá trị không đổi khi cát tuyến ABC quay quanh A. c) Xác định vị trí điểm A để góc TAT'=...
Đọc tiếp
Cho điểm A ở ngoài đường tròn (O ;R). Kẻ hai tiếp tuyến AT, AT' và cát tuyến ABC với (O ;R). gọi H là trung điểm của BC ; TT' cắt OA và BC lần lượt tại I và J. a) Chứng minh : AT² = AI. AO b) Chứng minh các tam giác AIJ và AHO đồng dạng. Từ đó suy ra tích AJ. AH có giá trị không đổi khi cát tuyến ABC quay quanh A. c) Xác định vị trí điểm A để góc TAT'= 60°.
a: Xét (O) có
AT là tiếp tuyến
AT' là tiếp tuyến
Do đó: AT=AT'
hay A nằm trên đường trung trực của TT'(1)
Ta có: OT=OT'
nên O nằm trên đường trung trực của TT'(2)
Từ (1) và (2) suy ra AO là đường trung trực của TT'
Xét ΔOTA vuông tại T có TI là đường cao
nên \(AT^2=AI\cdot AO\)
b: Xét ΔAIJ vuông tại I và ΔAHO vuông tại H có
\(\widehat{HAO}\) chung
Do đó: ΔAIJ\(\sim\)ΔAHO
b vẽ hình ra dc k