K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2023

 Gọi K là hình chiếu của M lên AC. Xét tam giác MBH vuông tại H và MCK vuông tại K, ta có:

\(MB=MC\) (M là trung điểm BC); \(\widehat{B}=\widehat{C}\) (tam giác ABC cân tại A)

 \(\Rightarrow\Delta MBH=\Delta MCK\left(ch-gn\right)\)  \(\Rightarrow MH=MK\)

 Ta thấy MK chính là khoảng cách từ AC đến M, đồng thời MK bằng MH là bán kính của đường tròn (M; MH) nên AC tiếp xúc với (M) (đpcm)

11 tháng 10 2021

\(a,\left\{{}\begin{matrix}BM=MC\\MH//AC\left(\perp AB\right)\end{matrix}\right.\Rightarrow AH=HB\) hay H là trung điểm AB

\(b,\left\{{}\begin{matrix}BM=MC\\AH=HB\end{matrix}\right.\Rightarrow MH\) là đtb tg ABC

\(\Rightarrow MH=\dfrac{1}{2}AC\)

Mà \(AC^2=BC^2-AB^2=144\left(pytago\right)\Rightarrow AC=12\left(cm\right)\)

\(\Rightarrow MH=6\left(cm\right)\)

28 tháng 8 2023

A B C M H N I E Q K D

a/

\(BN\perp AC;MH\perp AC\) => MH//BN

Xét tg BNC có

MH//BN

MB=MC

=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MH//BN. Xét tg AMH

\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)

Mà IM=IH => ED=EN

b/

Xét tg vuông ABN có

\(BN^2=AB^2-AN^2=AC^2-AN^2=\)

\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)

\(=AC^2-AC^2+4AC.HN-4HN^2=\)

\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)

\(=4HN.HA\)

Xét tg BCN có

MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)

Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)

Ta có

\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)

\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)