Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
Bạn ơi trả lời nhanh hộ mình với mình chỉ còn 1 ngày làm bài thôi các bạn ah
ko biết mk làm có đúng ko nhé tham khỏa thôi
A= (62019-62018):62018 B=(72020+72019) : 72019
= 62019 : 62018-62018 : 62018 = 72020:72019+72019:72019
= 61 - 60 =71+70
= 6-1=5 =7+1=8
Sửa đề :
1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 - ... + 2018 - 2019 - 2020 + 2021
= 1 + ( 2 - 3 - 4 + 5 ) + ( 6 - 7 - 8 + 9 ) + ... + ( 2018 - 2019 - 2020 + 2021 )
= 1 + 0 + 0 + ... + 0
= 1
+Tìm số số hạng
+ Tình cặp. Xem dư số nào mà k cộng được vs số nào ( VD 100 )
+ Lấy số dư cộng số cặp ( VD : 50+49.100)
+ Tìm kết quả .
Dễ mà
b1: tìm số các số hạng trong tổng đại số trên
b2:nhóm các số có tổng = nhau lại như 1-2=2-3=....=2017-2018=-1. còn thừa số 2019.có tất cả 1009 nhóm có giá trị là -1
b3: lấy -1.1009 vì có 1009 nhóm. sau đó cộng với 2019
b4: kết quả là 1010
ý b cậu làm tương tự nhé( để ý dấu -)
\(A=1+2-3-4+5+6-7-8+...-2020\)
\(A=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2017+2018-2019-2020\right)\)
\(A=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(A=\left(-4\right)\cdot\dfrac{2020}{4}\)
\(A=-2020\)
A=1+2-3-4+5+6-7-8+9+..+2018-2019-2020
A= (1+2-3-4) + (5+6-7-8) +...+ (2017+2018 - 2019 - 2020)
A= -4 + (-4) +... + (-4) (505 thừa số -4)
A= -4 x 505 = -2020
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
\(7^{2019}-7^{2020}=7^{2019}\left(1-7\right)\)
\(7^{2018}-7^{2019}=7^{2018}\left(1-7\right)\)
Mà \(7^{2019}>7^{2018}\)
\(\Rightarrow7^{2019}-7^{2020}>7^{2018}-7^{2019}\)
# Học tốt
\(7^{2019}-7^{2020}=7^{2019}-7\cdot7^{2019}=-6.7^{2019}\)
\(7^{2018}-7^{2019}=7^{2018}-7\cdot7^{2018}=-6\cdot7^{2018}\)
vì \(7^{2019}>7^{2018}\Rightarrow-6\cdot7^{2019}< -6\cdot7^{2018}\)
Vậy \(7^{2019}-7^{2020}< 7^{2018}-7^{2019}\)