Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét tam giác ABE và tam giác DBE có:
+ BM chung.
+ AB = DB (gt).
+ ^ABE = ^DBE (do BE là phân giác ^ABD).
=> Tam giác ABE = Tam giác DBE (c - g - c).
2) Xét tam giác ABD có: BA = BD (Tam giác ABE = Tam giác DBE).
=> Tam giác ABD cân tại B.
Mà BE là phân giác ^ABD (gt).
=> BE là đường cao (Tính chất các đường trong tam giác cân).
Lại có: BE cắt AD tại M (gt).
=> BE vuông góc AD tại M (đpcm).
3) Xét tam giác FBC có:
+ BN là trung tuyến (do N là trung điểm của CF).
+ BN là phân giác của ^FBC (do BE là phân giác ^ABD).
=> Tam giác FBC cân tại B.
=> BN là đường cao (Tính chất các đường trong tam giác cân).
=> BN vuông góc FC. (1)
Vì tam giác FBC cân tại B (cmt). => ^BCF = (180o - ^DBA) : 2.
Vì tam giác ABD cân tại B (cmt). => ^BDA = (180o - ^DBA) : 2.
=> ^BCF = ^BDA.
Mà 2 góc này ở vị trí đồng vị.
=> AD // FC (dhnb).
Mà BE vuông góc với AD tại M (cmt).
=> BE vuông góc FC. (2)
Từ (1) và (2) => 3 điểm B, E, N thẳng hàng (đpcm).
a: Xét ΔABE và ΔDBE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔABE=ΔDBE
a: Xét ΔAIB và ΔAIE có
AI chung
\(\widehat{BAI}=\widehat{EAI}\)
AB=AE
Do đó: ΔAIB=ΔAIE
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE
hay AD\(\perp\)BE
a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=AE
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
a:Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Ta có: ΔABE=ΔACD
nên BE=CD
c: Xét ΔDBC và ΔECB có
DB=EC
DC=EB
BC chung
DO đó; ΔDBC=ΔECB
Suy ra: \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
Bổ sung đề: D và E lần lượt là trung điểm của AB và AC
a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=DB=AE=EC
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
b) Ta có: ΔABE=ΔACD(cmt)
nên BE=CD(hai cạnh tương ứng)
c) Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
d) Xét ΔABK và ΔACK có
AB=AC(ΔABC cân tại A)AK chung
BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)
mà tia AK nằm giữa hai tia AB,AC
nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
Thiên tài thôi cũng vừa phải thôi bạn, vầy ai nhìn được?