Cho 13x + 4y chia hết cho 17 Chứng minh 7x + 10y chia hết cho 17 với x ,y thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 7x+4y \(⋮\)37
\(\Rightarrow\)13.(7x+4y) \(⋮37\)
Ta xét biểu thức sau:
7.(13x+18y) - 13.(7x+4y)
=91x+126y - 91x - 52y
= 74y \(⋮37\)
Vì 74y\(⋮37\)
và\(13.\left(7x+4y\right)⋮37\)
=>7.(13x+18y)\(⋮37\)
Mà (7,37)=1
=>13x+18y\(⋮37\)
Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y cũng chia hết cho 37
Vì (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 hay (65x + 20y) ⋮ 17 (1). Nếu (7x + 10y) ⋮ 17 => 2(7x + 10y) ⋮ 17 hay (14x + 20y) ⋮ 17 (2). Từ (1)(2) => (65x + 20y) - (14x + 20y) = 51x = 17.3x ⋮ 17 => (7x + 10y) ⋮ 17. Vậy (7x + 10y) ⋮ 17 (đpcm)
Vì sao (13x + 4y) ⋮ 17 => 5(13x + 4y) ⋮ 17 mình chưa hiểu sao có 5 bạn giải thích giúp mình
+A=60n+45=15(4n+3) chia hết cho 15
+A=60n+45=(60n+30)+15=30(2n+1)+15
30(2n+1) chia hết cho 30 nhưng 15 không chia hết chgo 30 nên A không chia hết cho 30