K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

Em học lớp 5 mà.Em xin lỗi chị

TL

 1/2+1/3+1/4 +......+1/9

=1,828.....<2

HT Ạ

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

4 tháng 4 2018

\(C=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

=> \(C< \frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

\(C=\frac{1}{3^2}+\frac{1}{4^2}+..+\frac{1}{11^2}>\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{11.12}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{11}-\frac{1}{12}\)

\(=>C>\frac{1}{3}-\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

=> 1/4 < C < 9/22

9 tháng 8 2020

\(P=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{121}+\frac{1}{144}\)

\(\Rightarrow P=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{11^2}+\frac{1}{12^2}\)

Ta có : \(P< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}+\frac{1}{11.12}\)

\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{12}\)

\(\Rightarrow P< \frac{2}{3}\left(đpcm\right)\)

9 tháng 8 2020

\(P=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+...+\frac{1}{121}+\frac{1}{144}\)

\(P=\frac{1}{4}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{11^2}+\frac{1}{12^2}\)

Có : \(P< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}+\frac{1}{11.12}\)

\(\Rightarrow P< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(\Rightarrow P< \frac{1}{4}=\frac{1}{2}-\frac{1}{12}\)

\(\Rightarrow P< \frac{2}{3}\)( đpcm )

AH
Akai Haruma
Giáo viên
18 tháng 1 2024

Lời giải:

\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{9^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8..9}\)

hay \(S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\)

\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(S< 1-\frac{1}{9}=\frac{8}{9}\) (1)

-----------------------

Mặt khác:

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\\ S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\\ S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\\ S> \frac{1}{2}-\frac{1}{10}=\frac{2}{5}(2)\)

Từ $(1); (2)$ ta có đpcm

18 tháng 1 2024

2*2 là 2 x 2 hay 22 thế em?