1/1*2+1/2*3+1/3*4+...................+1/2005*2006
giúp tớ với!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$
$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$
$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$
$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$
$>0+0=0$
$\Rightarrow A>3$
b/
$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$
$=1-\frac{1}{2015}<1$
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{1}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{2004}}{2004}-\frac{\sqrt{2005}}{2005}\)
\(=1-\frac{\sqrt{2005}}{2005}\)
1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2005*2006
= 1- 1/2 + 1/2 - 1/3 + 1/3 -1 /4 + ...+1/2005 - 1/2006
= 1 - 1/2006
= 2005/2006
1/(1*2)+1/(2*3)+1/(3*4)+...+1/(2005*2006)
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2005-1/2006
=1-1/2006
=2005/2006
d
ong y