K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

tu lam di luc nao cung hoi z

1 tháng 4 2016

kệ ha ok

25 tháng 9 2023

1b) có thiếu ko cau?

25 tháng 9 2023

`1a)5^3` và `3^5`

`5^3=125`

`3^5=243`

Vì `243>125` nên `3^5>5^3`

__

`c)3^24` và `27^7`

`27^7=(3^3)^7=3^21`

Vì `3^24>3^31` nên `3^24>27^7`

 

`2a)x^3=216`

`=>x^3=6^3`

`=>x=6`

__

`b)3^x+15=18`

`=>3^x=18-15`

`=>3^x=3`

`=>x=1`

Bài 2: 

a: Ta có: \(\dfrac{9}{11}=1-\dfrac{2}{11}\)

\(\dfrac{13}{15}=1-\dfrac{2}{15}\)

mà \(-\dfrac{2}{11}< -\dfrac{2}{15}\)

nên \(\dfrac{9}{11}< \dfrac{13}{15}\)

b: Ta có: \(\dfrac{19}{15}=1+\dfrac{4}{15}\)

\(\dfrac{15}{11}=1+\dfrac{4}{11}\)

mà \(\dfrac{4}{15}< \dfrac{4}{11}\)

nên \(\dfrac{19}{15}< \dfrac{15}{11}\)

19 tháng 8 2021

2 câu kia đâu rùi

14 tháng 8 2021
a,7.10>0b,123.8>12.31c,15.28<22.27d,17.3>23.2

a. 7 . 10 > 0

b. 123 . 8 > 12 . 31

c. 15 . 28 < 22 . 27

d. 17 . 3 > 23 . 2 

HT nha^^

7.0  >  0                      123.8  > 12.31                     15.28  <  22.27                         17.  > 23.2

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$

a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)

mà 17^19+1>17^18+1

nên A<B

b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)

\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)

2^2021-1<2^2022-1

=>1/2^2021-1>1/2^2022-1

=>-1/2^2021-1<-1/2^2022-1

=>C<D

12 tháng 3 2023

cho mình bài c với đc ko?mình ko bik làm😫😖

16 tháng 4 2021

A=(17^18+1)/(17^19+1)

17A=17(17^18+1)/17^19+1=17^19+17/17^19+1

17A=(17^19+1)+16/(17^19+1)=1+16/17^19+1    

 

B=(17^17+1)/(17^18+1)

17B=17(17^17+1)/17^18+1=17^18+17/17^18+1

17B=(17^18+1)+16/(17^18+1)=1+16/17^18+1

Từ (1) và (2)⇒1+16/17^19+1<1+16/17^18+1

=> 17A<17B

Hay A<B

Vậy A<B

14 tháng 8 2023

\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)

Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)

b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)

Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)

14 tháng 8 2023

cứu

 

29 tháng 9 2023

\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)

\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)

Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)

#\(Toru\)

29 tháng 9 2023

a> \(3^{200}\) và \(2^{300}\)

Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì 9>8 nên \(9^{100}>8^{100}\)

\(\Rightarrow\)\(3^{200}>2^{300}\)

b> \(5^{40}\) và \(3^{50}\)

Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)

         \(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)

Vì 625 > 243 nên \(625^{10}>243^{10}\)

\(\Rightarrow\)\(5^{40}>3^{50}\)