\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{49.50}\)
Giai cu the cho like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì \(1-\frac{1}{50}< 1\)nên A < 1
B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(\Rightarrow A< 1\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow B< \frac{1}{2}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
bài toán giải theo phương pháp khử liên tiếp (Toán nâng cao). Áp dụng công thức: \(\frac{a}{k.m}=\frac{a}{k}-\frac{a}{m}\)với a,k,m\(\in N\)
\(k< m;m-k=a\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50
= 49/50
A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
= 1-\(\frac{1}{50}\)
= \(\frac{49}{50}\)
\(\:\frac{-1}{1.2}+\frac{-1}{2.3}+\frac{-1}{3.4}+\frac{-1}{4.5}\)
\(=-1\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\right)\)
=\(-1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
=\(-1\left(1-\frac{1}{5}\right)\)
=\(-1\times\frac{4}{5}\)
=\(\frac{-4}{5}\)
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50
= 49/50
ỦNG HỘ NHA
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
Làm bậy, mà đúng
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ \(\frac{1}{4.5}\)+ … + \(\frac{1}{99.100}\)
= \(\frac{1}{1}\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)-\(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{5}\)+ … + \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(\frac{1}{1}\)- \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Ta có
\(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)
\(=2-\frac{1}{10}\)
\(=\frac{19}{10}\)
Vậy \(1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)\(=\frac{19}{10}\)
ta có : 1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50
= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.....+1/49-1/50
=1/1-1/50
= 49/50
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)