K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2023

Áp dụng hệ thức vi ét:

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)

⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)

\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)

Chọn A

a: Khi m=-1 thì phương trình sẽ là:

x^2-(-3-1)x+2-1-1=0

=>x^2+4x=0

=>x=0 hoặc x=-4

29 tháng 3 2017

\(ax^2+bx+c=0\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}\\P=x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

Ta có pt bậc 2 có 2 nghiệm là \(\dfrac{1}{x^2_1};\dfrac{1}{x^2_2}\)

\(\Rightarrow\left\{{}\begin{matrix}S'=\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}\\P'=\dfrac{1}{x^2_1x^2_2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S'=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x^2_1x^2_2}\\P'=\dfrac{1}{x^2_1x^2_2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S'=\dfrac{\left(\dfrac{-b}{a}\right)^2-\dfrac{2c}{a}}{\left(\dfrac{c}{a}\right)^2}\\P'=\dfrac{1}{\left(\dfrac{c}{a}\right)^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S'=\dfrac{\dfrac{b^2}{a^2}-\dfrac{2c}{a}}{\dfrac{c^2}{a^2}}\\P'=\dfrac{1}{\dfrac{c^2}{a^2}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}S'=\dfrac{\dfrac{b^2-2ca}{a^2}}{\dfrac{c^2}{a^2}}=\dfrac{b^2-2ca}{c^2}\\P'=\dfrac{a^2}{c^2}\end{matrix}\right.\)

Theo định lý Viet đảo pt bậc 2 cần lập

\(\Leftrightarrow z^2-S'z+P'=0\)

\(\Leftrightarrow z^2-\dfrac{b^2-2ca}{c^2}z+\dfrac{a^2}{c^2}=0\)

a: Khi m=4 thì phương trình trở thành \(x^2-4x+3=0\)

=>(x-3)*(x-1)=0

=>x=3 hoặc x=1

b: \(x_1+x_2=m\)

\(x_1x_2=m-1\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=m^2-2\left(m-1\right)=m^2-2m+2\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2\)

\(=\left(m^2-2m+2\right)^2-2\cdot\left(m-1\right)^2\)

\(=m^4+4m^2+4-4m^3+4m^2-8m-2m^2+4m-2\)

\(=m^4-4m^3+2m^2-4m+2\)

NV
18 tháng 3 2021

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)

\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)

\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)

\(P_{min}\) ko tồn tại

Bạn ghi sai đề?

27 tháng 3 2021

\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)

\(\to\) Pt luôn có 2 nghiệm phân biệt

Theo Viét

\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)

\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)

Vậy \(\max P=-\dfrac{15}{4}\)

NV
4 tháng 4 2020

Câu 2:

\(\Delta'=9-\left(m+7\right)=2-m\)

a/ Để pt có 2 nghiệm âm pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1+x_2< 0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2-m>0\\-6< 0\\m+7>0\end{matrix}\right.\) \(\Rightarrow-7< m< 2\)

b/ Để pt chỉ có 1 nghiệm

\(\Leftrightarrow\Delta'=0\Rightarrow2-m=0\Rightarrow m=2\)

c/ Do \(x_2\) là nghiệm của pt nên:

\(x_2^2+6x_2+m+7=0\) \(\Leftrightarrow x_2^2+7x_2+m+4=x_2-3\)

Thay vào bài toán:

\(\left(x_2-3\right)x_2+\left(x_1-3\right)x_1=44\)

\(\Leftrightarrow x_1^2+x_2^2-3\left(x_1+x_2\right)=44\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=44\)

\(\Leftrightarrow36-2\left(m+7\right)+18=44\)

\(\Leftrightarrow2m=-4\Rightarrow m=-2\)

24 tháng 3 2017

Đáp án: D

Theo định lý Vi-ét ta có

Khi đó,   là nghiệm của phương trình

26 tháng 4 2023

loading...