Gía trị lớn nhất của:
B= - x^2 -y^2 +xy +2x +2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=-2x^2-2y^2+2xy+2x+2y=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+2\)
\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2+2\le2\)
\(\Rightarrow GTLN.A=1\) khi \(x=y=1\)
Mr Lazy sai òi, \(2A=-2x^2-2y^2+2xy+4x+4y=-\left(x-1\right)^2-\left(y-1\right)^2-\left(x-y\right)^2+8\le8\)
Đặt \(A=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow2A=-2x^2-2y^2+2xy+4x+4y\)
\(=-\left(x^2-4x+4\right)-\left(y^2-y+4\right)-\left(x^2-2xy+y^2\right)+8\)
\(=8-\left(x-2\right)^2-\left(y-2\right)^2-\left(x-y\right)^2\)
\(A=\frac{7}{2}-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)=\frac{7}{2}-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le\frac{7}{2}\)
=> GTLN của A=7/2 <=> x=y=1/2
\(B=4-\left(\frac{x^2}{2}-2.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}xy+\frac{y^2}{2}\right)-\left(\frac{1}{2}x^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}x+2\right)-\left(\frac{1}{2}y^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}y+2\right)\)
\(=4-\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2-\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2-\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right)^2\le4\)
=> GTLN của B=4 <==> x=y=2
\(D=-x^2-y^2+xy+2x+2y\)
\(\Rightarrow D=-\dfrac{x^2}{2}+xy-\dfrac{y^2}{2}-\dfrac{x^2}{2}+2x-\dfrac{y^2}{2}+2y\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-xy+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2x\right)-\left(\dfrac{y^2}{2}-2y\right)\)
\(\Rightarrow D=-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\dfrac{y}{\sqrt[]{2}}+\dfrac{y^2}{2}\right)-\left(\dfrac{x^2}{2}-2.\dfrac{x}{\sqrt[]{2}}.\sqrt[]{2}+2\right)-\left(\dfrac{y^2}{2}-2.\dfrac{y}{\sqrt[]{2}}.\sqrt[]{2}+2\right)+2+2\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\)
mà \(\left\{{}\begin{matrix}-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2\le0,\forall x;y\\-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall x\\-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2\le0,\forall y\end{matrix}\right.\)
\(\Rightarrow D=-\left(\dfrac{x}{\sqrt[]{2}}-\dfrac{y}{\sqrt[]{2}}\right)^2-\left(\dfrac{x}{\sqrt[]{2}}-\sqrt[]{2}\right)^2-\left(\dfrac{y}{\sqrt[]{2}}-\sqrt[]{2}\right)^2+4\le4\)
\(\Rightarrow GTLN\left(D\right)=4\left(tạix=y=2\right)\)