100:10:10=10:10
=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=100^10+1/100^10-1
B=10^100+1/10^100-3
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{100^{10}-3}\)
vì 10010-1>10010-3
=>\(\frac{4}{100^{10}-1}<\frac{4}{100^{10}-3}\)
=>A<B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)
hay 1/10.A>1/10.B
=>A>B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)
hay 1/10.A<1/10.B
=>A<B
Ta có :
\(A=\dfrac{100^{10}+1}{100^{10}-1}=\dfrac{100^{10}-1+2}{100^{10}-1}=\dfrac{100^{10}-1}{100^{10}-1}+\dfrac{2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)
\(B=\dfrac{100^{10}-1}{100^{10}-3}=\dfrac{100^{10}-3+2}{100^{10}-3}=\dfrac{100^{10}-3}{100^{10}-3}+\dfrac{2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)
\(\) Vì \(1+\dfrac{2}{100^{10}-1}< 1+\dfrac{2}{100^{10}-3}\Rightarrow A< B\)
Áp dụng a /b > 1 => a/b > a+m/b+m (a;b;m thuộc N*)
Ta có:
\(\frac{100^{10}-1}{100^{10}-3}>\frac{100^{100}-1+2}{100^{10}-3+2}\)
\(>\frac{100^{100}+1}{100^{10}-1}\)
1/
\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 1< 10B$
$\Rightarrow A< B$
2/
\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)
\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)
So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)
$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$
$\Rightarrow C> D$
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{100}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{100^{10}-1}{100^{10}-3}=\frac{100^{10}-3+2}{100^{10}-3}=\frac{100^{10}-3}{100^{10}-3}+\frac{2}{100^{10}-3}=1+\frac{2}{100^{10}-3}\)
vì 10010-1>10010-3
\(\Rightarrow\frac{2}{100^{10}-1}<\frac{2}{100^{10}-3}\)
=>A<B
100 : 10 : 10 = 10 : 10
= 1 .
#Songminhnguyệt