Tìm các số x,y ( x,y \(\in\) Z )
a) ( x - 1 )( x + 2 ) = 5
b) xy + 6 = 2( x + y )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a, cộng vế vs vế của 3 biểu thức ta có :
\(2\left(x+y+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(2\left(x+y+z\right)=-\frac{5}{12}\)
\(x+y+z=-\frac{5}{24}\)
\(\begin{cases}z=\frac{23}{24}\\x=-\frac{11}{24}\\y=-\frac{17}{24}\end{cases}\)
Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)
\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)
Dấu = xảy ra khi x=2
=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)
Đặt t=(x+y+z)^2(t>=36)
=>P>=2t/t-6
Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)
\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)
=>f(t) đồng biến
=>f(t)>=f(36)=6/7
=>P>=12/7
Dấu = xảy ra khi x=y=z=2
\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)
\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)
\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)
\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)
\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)
\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)
=x+y-z
\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(\left(x-1\right)\left(x+2\right)=5\)
⇔ \(x^2+2x-x-2=5\)
⇔ \(x^2+x=7\)
⇔ \(x\left(x+1\right)=7\)
Vì x(x+1) la tích 2 số tự nhiên liên tiếp
⇒ \(x\left(x+1\right)\) ⋮ 2
mà 7 không chia hết cho 2
⇒ không tồn tại x thỏa mãn