cho 3 số a,b,c không âm
\(6\left(-a+b+c\right)\left(a^2+b^2+c^2\right)+27abc\ge10\left(a^2+b^2+c^2\right)^{\frac{3}{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
WLOG \(a=max\left\{a,b,c\right\}\rightarrow90^o\le\widehat{A}< 180^o\rightarrow cosA\le0\)
Khi đó \(a^2=b^2+c^2-2bc\cdot cosA\ge b^2+c^2\)
\(LHS=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(=a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{b^2+c^2}{a^2}+\left(b^2+c^2\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+1\)
\(\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+5\)
\(=\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+5+\frac{3a^2}{b^2+c^2}\)
\(\ge2+5+3=10\)
"=" b=c và A=90 hay tam giác ABC vuông cân tại A
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.