K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

đây hổng

31 tháng 3 2016

a, căn x >0  ( vì o phải là âm căn)

   => x>0 mà x+ 5 căn x bằng 0 <=> 5 căn x = 0 .... sau đó  suy ra x=0

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

26 tháng 12 2017

chiu ban oi

18 tháng 6 2019

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

2 tháng 7 2019

ai giúp mk vs huhu....

2 tháng 7 2019

Lần sau bạn gõ căn ra nhé, nhìn thế này hơi khó đấy :>

Tìm x:

\(a.x-\sqrt{x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b. Đề hơi sai sai nên mk chưa làm ra :<

\(c.x-2\sqrt{x}+1=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow x=1\)

\(d.\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x\right)^2-2\cdot2x\cdot1+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\left(1\right)\)

+) T/h 1: \(x\ge\frac{1}{2}thì\left(1\right)\Leftrightarrow2x-1=3\Leftrightarrow2x=4\Leftrightarrow x=2\)

+) T/h 2: \(x< \frac{1}{2}thì\left(1\right)\Leftrightarrow1-2x=3\Leftrightarrow-2x=2\Leftrightarrow x=-1\)

Vậy......................

\(e.\sqrt{x^2-6x+9}=5\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\Leftrightarrow\left|x-3\right|=5\left(2\right)\)

+) T/h 1: \(x\ge3thì\left(2\right)\Leftrightarrow x-3=5\Leftrightarrow x=8\)

+) T/h 2: \(x< 3thì\left(2\right)\Leftrightarrow3-x=5\Leftrightarrow x=-2\)

Vậy ..........................

2 tháng 7 2019

Bài 3

\(a.\) Mình hiểu đề thế này, có gì sai cmt cho mk biết nha :>

\(\sqrt{\frac{5-4x}{3}}\) có nghĩa khi \(\sqrt{5-4x}\ge0\Leftrightarrow5-4x\ge0\Leftrightarrow x\le\frac{5}{4}\)

\(b.\sqrt{2x^2+1}\)

\(x^2\ge0\Leftrightarrow2x^2+1\ge1>0\forall x\)

Vậy biểu thức trên luôn có nghĩa với mọi giá trị của x

\(c.\sqrt{\frac{x-1}{2}}\) có nghĩa khi \(x-1\ge0\Leftrightarrow x\ge1\)

\(d.\frac{x-1}{x-2}-1\) có nghĩa khi \(x-2\ne0\Leftrightarrow x\ne2\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

19 tháng 10 2021

\(1,\\ a,ĐK:x\ge-\dfrac{1}{2}\\ PT\Leftrightarrow\sqrt{2x+1}=\dfrac{2}{3}\Leftrightarrow2x+1=\dfrac{4}{9}\Leftrightarrow x=-\dfrac{5}{18}\left(tm\right)\\ b,PT\Leftrightarrow\left|x-3\right|=2\Leftrightarrow\left[{}\begin{matrix}x-3=2\\3-x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\\ 2,\\ a,=\left|5-x\right|=x-5\\ b,=\sqrt{4a\cdot44a}=\sqrt{176a^2}=4\left|a\right|\sqrt{11}=4a\sqrt{11}\\ c,=\sqrt{\left(2x-1\right)^2}=\left|2x-1\right|=2x-1\)