tam giác abc có ab>ac. trên ab,ac lấy n, sao cho an=am. gọi o là giao của bm và cn. chứng minh ob>oc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Menelaus trong tam giác ABN ta có :
MAMB.OBON.CNCA=131.OBON.1,54,5=1
⇒OBON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NANC.OCOM.BMBA=1
31,5.OCOM.14=1
OCOM=2
Vậy OBON+OCOM=3
Áp dụng định lí Mê-nê-la-uýt trong tam giác ABN ta có:
MA/MB.OB/ON.CN/CA=1
3/1.OB/ON.1,5/4,5=1
⇒OB/ON=1
Áp dụng định lí Mê-nê-la-uýt trong tam giác ACM ta có:
NA/NC.OC/OM.BM/BA=1
3/1,5.OC/OM.1/4=1
OC/OM=2
Vậy OB/ON+OC/OM=3
a: AM+MC=AC
NA+NB=AB
mà AB=AC; AM=AN
nên MC=NB
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
Do AB>AC nên lấy điểm P trên AB sao cho AP=AC . GỌi D là giao điểm của CN zà PM . DO AN =AM<AC=AP nên P nằm giữa N zà B nha
từ đó ˆBMN>ˆPMN
tự CM tam giác DMN cân tại D ( dễ tự làm ) nên ˆPMN=ˆCNM⇒ˆBMN>ˆCNM⇒ˆOMN>ˆONM
trong tam giác OMN có ˆOMN>ˆONM=>ON>OM(1)
tự xét tam giác APM = tam giác CAN (c,g.c nha)
=> PM=CN
doΔAPCcân tại A nên ˆAPC<900=>ˆAPM<900hayˆBPM>900
trong tam giác PBM có góc BPM > 90 độ mà lại là góc lớn nhất nên BM>PM=CN(2)
từ 1 zà 2 suy ra BM-OM>CN-ON hay OB>OC
mk ghét nhất là lm bài hình về tam giác đẫ thế vt giả thiết kết luận tốn thì giờ
bài này thì cần gì viết gt, kl