K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

thằng khoa 

ko làm được thì thôi năng còn dám lên đây hỏi hổng

5 tháng 4 2018

Đây là đặc quyền của online math ko biết bài nào thì nên đây chia sẻ để các bạn trên online math giúp đỡ mà!!!

24 tháng 7 2020

y = 9 nha bạn 

bạn cứ thử xem

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

4 tháng 2 2021

thanks bạn

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)