K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

1 nhân 0 bằng 0 vậy là do 0 nhân với số nào cx bằng 0 hay do 1 nhân với số nào cx bằng chính số đo

12 tháng 8 2017

\(a,\frac{7n+3}{n}\)

\(\Rightarrow3⋮n\)Vì \(7n⋮n\)

\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)

\(b,\frac{12n-1}{4n+2}\)

\(=\frac{12n+6-7}{4n+2}\)

\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)

Để \(12n-1⋮4n+2\)

\(\Rightarrow7⋮4n+2\)

\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)

12 tháng 8 2017

a) Ta có :

\(7n+3⋮n\)

\(n⋮n\)

\(\Leftrightarrow\left\{{}\begin{matrix}7n+3⋮n\\7n⋮n\end{matrix}\right.\)

\(\Leftrightarrow3⋮n\)

\(n\in N;3⋮n\Leftrightarrow n\inƯ\left(3\right)=\left\{1;3\right\}\)

Vậy ....................

b) Ta có :

\(12n-1⋮4n+2\)

\(4n+2⋮4n+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n-1⋮4n+2\\12n+6⋮4n+2\end{matrix}\right.\)

\(\Leftrightarrow7⋮4n+2\)

\(n\in N\Leftrightarrow4n+2\in N;4n+2\inƯ\left(7\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}4n+2=1\\4n+2=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{-1}{4}\\n=\dfrac{5}{4}\end{matrix}\right.\) \(\left(loại\right)\)

Vậy ....

12 tháng 8 2017

mình chỉ bt câu a mình học trên lớp thôi bn thông cảm ! :(

a.

Ta có: 7n+3 chia hết cho n => 7n chia hết cho n => 3 chia hết cho n

mà n thuộcN => n thuộc Ư(3)

vậy n thuộc Ư [1;3}

TICK zùm mình nhé!

4 tháng 1 2022

Bạn có thể giải thích giúp mình tại sao chọn C đc ko ạ?

 

7 tháng 1 2022

D nha

 

12 tháng 5 2023

Hợp lực F có giới hạn:

\(\left|F_1-F_2\right|\le F\le\left|F_1+F_2\right|\)

\(\Leftrightarrow\left|10-15\right|\le F\le\left|10+15\right|\)

\(\Leftrightarrow5N\le F\le25N\)

\(\Rightarrow\) Chọn A, B, C

12 tháng 5 2023

Ta có : \(\overrightarrow{F}=\overrightarrow{F_1}+\overrightarrow{F_2}\)

Mà \(F_1\perp F_2\) \(\Rightarrow F=\sqrt{F_1^2+F_2^2}=\sqrt{10^2+15^2}=5\sqrt{13}\left(N\right)\)

Vậy hợp lực của 2 lực là \(5\sqrt{13}N\)

Chọn C

 

NV
7 tháng 2 2020

\(=lim\frac{\left(\frac{3-5n}{n}\right)^2\left(\frac{n+2}{n}\right)^2}{\frac{1-7n+10n^4}{n^4}}=lim\frac{\left(\frac{3}{n}-5\right)^2\left(1+\frac{2}{n}\right)^2}{\frac{1}{n^4}-\frac{7}{n^3}+10}=\frac{\left(-5\right)^2.1^2}{10}=\frac{5}{2}\)