Cho S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{n.\left(n+3\right)}\) với n thuộc N*
Chứng tỏ rằng S<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{n+3}\)
\(\Leftrightarrow S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\frac{n+2}{n+3}< 1\Rightarrow S< 1\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(=1-\frac{1}{n+3}\)
Ta có :
\(\frac{1}{n+3}>0\)
\(\Leftrightarrow-\frac{1}{n+3}< 0\)
\(\Leftrightarrow1-\frac{1}{n+3}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+2}{n+3}\)
Vi \(n\inℕ^∗\)nên \(n+2< n+3\)
DO đó\(\frac{n+2}{n+3}< 1\)
Vậy S <1
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Rightarrow S=1-\frac{1}{n+3}\)
\(\Rightarrow S=\frac{n+3-1}{n+3}\)
\(\Rightarrow S=\frac{n+2}{n+3}\)
P/s: Đến đó thôi.......^.^
\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+....+\frac{3}{n\cdot\left(n+3\right)}\)
\(S=\frac{4-1}{1\cdot4}+\frac{7-4}{4\cdot7}+\frac{10-7}{7\cdot10}+....+\frac{\left(n+3\right)-n}{n\cdot\left(n+3\right)}\)
\(S=\left(\frac{4}{1\cdot4}-\frac{1}{1\cdot4}\right)+\left(\frac{7}{4\cdot7}-\frac{4}{4\cdot7}\right)+\left(\frac{10}{7\cdot10}-\frac{7}{7\cdot10}\right)+.....+\left(\frac{n+3}{n\cdot\left(n+3\right)}-\frac{n}{n\cdot\left(n+3\right)}\right)\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+2}{n+3}\)
\(\Rightarrow\) S < 1 ( đpcm )
=> S = ( 1 -\(\frac{1}{4}\)) + ( \(\frac{1}{4}\)- \(\frac{1}{7}\)) +(\(\frac{1}{7}\)- \(\frac{1}{10}\)) +.....+ (\(\frac{1}{n}\)- \(\frac{1}{n+3}\))
=> S = 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{10}\)+......+ \(\frac{1}{n}\)- \(\frac{1}{n+3}\)
=> S = 1 - \(\frac{1}{n+3}\)
vậy S = 1- \(\frac{1}{n+3}\)
\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}\)
Có \(1-\frac{1}{46}< 1\)
\(\Rightarrow S< 1\)
nhan xet:3/1.4=1/1-1/4
3/4.7=1/4-1/7
3/7.10=1/7-1/10
.....................
3/40.43=1/40-1/43
3/43.46=1/43-1/46
S=1/1-1/3+1/3-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=46/46-1/46
S=45/46<1
vay s<1
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)
\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)
\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)
Vậy S < 1
=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)
=>S= 1- 1/(n+3)
=>S + 1/(n+3) = 1
=>S<1