K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)

\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)

\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

12 tháng 1 2016

tich mik mik tich lai cho

12 tháng 1 2016

các bạn giải hẳn cho mình đi

9 tháng 8 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)

\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

5 tháng 5 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+......+\frac{1}{x\left(x+3\right)}=\frac{6}{19}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.......+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}\)

\(\frac{x+3-1}{x+3}=\frac{6}{19}\)

\(19.\left(x+2\right)=6\left(x+3\right)\)

19x+38=6x+18

13x= -20

x= \(\frac{-20}{13}\)

27 tháng 2 2018

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{4620}\)

\(\frac{1}{x+3}=\frac{823}{4620}\)

10 tháng 6 2020

\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

19 tháng 6 2016

1/5x8 + 1/8x11 + 1/11x14 + ... + 1/xx(x+3) = 101/1540

1/3 x (3/5x8 + 3/8x11 + 3/11x14 + ... + 3/xx(x+3) = 101/1540

1/3 x (1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + ... + 1/x - 1/x+3) = 101/1540

1/3 x (1/5 - 1/x+3) = 101/1540

1/5 - 1/x+3 = 101/1540 : 1/3

1/5 - 1/x+3 = 303/1540

1/x+3 = 1/5 - 303/1540

1/x+3 = 1/308

=> x+3=308

=> x=308-3=305

vậy x=305

19 tháng 6 2016

1/5x8 + 1/8x11 + 1/11x14 + ... + 1/xx(x+3) = 101/1540

1/3 x (3/5x8 + 3/8x11 + 3/11x14 + ... + 3/xx(x+3) = 101/1540

1/3 x (1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + ... + 1/x - 1/x+3) = 101/1540

1/3 x (1/5 - 1/x+3) = 101/1540

1/5 - 1/x+3 = 101/1540 : 1/3

1/5 - 1/x+3 = 303/1540

1/x+3 = 1/5 - 303/1540

1/x+3 = 1/308

=> x+3=308

=> x=308-3=305

vậy x=305

8 tháng 6 2023

\(\dfrac{1}{3\times7}+\dfrac{1}{7\times11}+\dfrac{1}{11\times15}+...+\dfrac{1}{a\times\left(a+4\right)}=\dfrac{50}{609}\)

\(\dfrac{1}{4}\times\left(\dfrac{4}{3\times7}+\dfrac{4}{7\times11}+...+\dfrac{4}{a\times\left(a+4\right)}\right)=\dfrac{50}{609}\)

\(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{a}-\dfrac{1}{a\times4}=\dfrac{50}{609}\div\dfrac{1}{4}\)

\(\dfrac{1}{3}-\dfrac{1}{a\times4}=\dfrac{200}{609}\)

\(\dfrac{1}{a\times4}=\dfrac{1}{3}-\dfrac{200}{609}\)

\(\dfrac{1}{a\times4}=\dfrac{1}{203}\)

\(a\times4=203\)

\(a=\dfrac{203}{4}\)

8 tháng 6 2023

 \(\dfrac{1}{3\times7}\)+\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\)  = \(\dfrac{50}{609}\)

 4\(\times\)\(\dfrac{1}{3\times7}\) +\(\dfrac{1}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{1}{a\times\left(a+4\right)}\)) = \(\dfrac{50}{609}\) \(\times\)4

\(\dfrac{4}{3\times7}\)\(\dfrac{4}{7\times11}\)+\(\dfrac{1}{11\times15}\)+...+\(\dfrac{4}{a\times\left(a+4\right)}\) = \(\dfrac{50}{609}\) \(\times\) 4

\(\dfrac{1}{3}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\)-\(\dfrac{1}{15}\)+...+\(\dfrac{1}{a}\)-\(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{a+4}\) = \(\dfrac{200}{609}\)

         \(\dfrac{1}{a+4}\) = \(\dfrac{1}{3}\) - \(\dfrac{200}{609}\)

           \(\dfrac{1}{a+4}\) = \(\dfrac{1}{203}\)

             a + 4  = 203

                 \(a\) = 203 - 4

                 \(a\) = 199

Đáp số: \(a\) = 199