1)Tìm nghiệm của đa thức B(x)= 3x2014 +9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)
=> \(1-a-9+b=27-9a-27+b\)
=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)
Từ đó tính được b = 9.
b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)
Đa thức f(x) có nghiệm khi:
\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)
Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.
1) Đa thức B(x) là đa thức một biến x sao lại có biến y hế????
2) x = -2 là nghiệm đa thức P(x) nên -2a + b =0 suy ra: b = 2a
Thay vào biểu thức ta được: 2011a + 2a/3a -2a = 2013a/ a= 2013
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
a.
\(x=2\Rightarrow N\left(2\right)=2^2-9=4-9=-5\)
b.
\(N\left(x\right)=0\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
a) P(x) =5x3 - 5x + 9 +x
=5x3 + (-5x + x) + 9
= 5x3 - 4x + 9
Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.
Để đa thức \(B\left(x\right)\) có nghiệm thì \(x^2-9=0\)
\(\Rightarrow x^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Để đa thức \(C\left(x\right)\) có nghiệm thì \(x^2+5x=0\)
\(\Rightarrow x\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
B(x)=0
=>x^2-9=0
=>x=3 hoặc x=-3
C(x)=0
=>x(x+5)=0
=>x=0 hoặc x=-5
Ta có:
\(4x^2+\dfrac{2}{5}x\)
\(=x\left(4x+\dfrac{2}{5}\right)\)
Do đó để đa thức \(4x^2+\dfrac{2}{5}x\) có nghiệm thì \(x\left(4x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x+\dfrac{2}{5}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x=-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy nghiệm của đa thức là \(x\in\left\{0;-\dfrac{1}{10}\right\}\)
B(x) có nghiệm <=>B(x)=0<=>3x2014+9=0
Mà 3x2014 \(\ge\) 0 với mọi x \(\in\) R
=>3x2014 + 9 \(\ge\) 0+9>0 (điều này vô lí)
Do đó đa tức B(x) vô nghiệm