K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)

\(=n^3+n^2+2n^2+2n\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n^2+2n\right)\left(n+1\right)\)

\(=n\left(n+2\right)\left(n+1\right)\)

Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3

=>n3+3n2+2n chia hết cho 3

b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5

Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)

A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5

+)Nếu n chia hết cho 5

=>n\(\in\){0;5}

+)Nếu n+1 chia hết cho 5

=>n\(\in\){4;9}

+)Nếu n+2 chia hết cho 5

=>n\(\in\){3;8}

Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15

Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.

12 tháng 4 2016

Khó nhờ!

 

20 tháng 6 2016

a) ta phân tích A=n.(n+1).(n+2) vì 3 số tự nhiên liên tiếp luôn có tích chia hết cho 3

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5