Tìm nghiệm của đa thức sau:
\(2x^2+x^3-\frac{1}{2}x+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
Ta có x(2x+2/3)=0
<=> x=0 hoặc 2x+2/3=0
<=> x=0 hoặc 2x=-2/3
<=> x=0 hoặc x=-2/6
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
cho B(x) = 0
\(=>2\left(x-1\right)+3\left(2-x\right)=0\)
\(2x-2+6-3x=0\)
\(4-x=0\)
\(x=4\)
cho C(x) = 0
\(=>8x^3-2x=0\)
\(2x^3.4-2x=0\)
\(2x\left(4x^2-1\right)=0\)
\(=>\left[{}\begin{matrix}2x=0\\4x^2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
tk
https://hoc24.vn/hoi-dap/page-4?subject=1#:~:text=tr%C6%B0%E1%BB%9Bc%20(22%3A29)-,cho%20B(x)%20%3D%200,2,-%3D%3E%5B2
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)