Cho A = \(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2019}\)
Chứng tỏ rằng A không phải là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Mai Anh - Toán lớp 6 - Học toán với OnlineMath:bạn tham khảo nhé.chỉ khác ở chỗ 45 với 2019 thôi !
Ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(.........................\)
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}=\frac{2018}{2019}\)
Mà \(0< B< 1\)nên \(B\)không phải là số tự nhiên
~ Hok tốt ~
tham khảo ở đây Bài 1360. A=1/2+1/3+1/4+...+1/15+1/16.Chứng tỏ rằng A không phải làsố tự nhiên. - GIÁO DỤC TIỂU HỌC - Blog Nguyễn Xuân Trường
Ta có: \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\); (1)
\(\frac{1}{8}\times4< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< \frac{1}{4}\times4\)
\(\frac{1}{2}< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< 1\); (2)
\(\frac{1}{16}\times8< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....+\frac{1}{16}< \frac{1}{8}\times8\)
\(\frac{1}{2}< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....\frac{1}{16}< 1\) (3)
Từ vế (1), (2) và (3) ta có:
\(1+\frac{1}{2}+\frac{1}{2}< A< 1+1+1\)
\(2< A< 3\)
Vậy A không phải là số tự nhiên.
\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(=2-\frac{1}{2012}< 2\)
mà \(S>1\)
do đó ta có đpcm.
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)
Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\left(2\right)\)
Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)
\(\Rightarrowđpcm\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\)
\(\Leftrightarrow A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{16}\right)+\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{15}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{4}+...\frac{1}{16}=B\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{8}\)
\(2B-B=B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{15}\)
\(A=\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\right).2+1+\frac{1}{9}+\frac{1}{11}+...+\frac{1}{15}\)
Tính A ra rồi chứng minh nó không phải phân số.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Ta có bài toán tổng quát sau:Chứng minh rằng tổng \(A=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}\)(n số hạng và n>1) không phải là số nguyên dương ta có:
\(1=\frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+...+\frac{n+1}{n^2+3}< \frac{n+1}{n^2+1}+\frac{n+1}{n^2+2}+....+\frac{n+1}{n^2+n}< \frac{n+1}{n^2}+\frac{n+1}{n^2}\)\(+....+\frac{n+1}{n^2}=2\)
Do đó A không phải là số nguyên dương với n=2019 thì ta có bài toán đã cho
ko bít
CHỊU THÔI KO BÍT :-D