tìm x,y biết
a) x.y=2
b) x.y=6
c) x.y=4 (x>y)
d) x.y=35 (x<y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!
a, \(xy=5\)hay \(x;y\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x | 1 | -1 | 5 | -5 |
y | 5 | -5 | 1 | -1 |
c, \(\left(x+1\right)\left(y-5\right)=-5\)hay \(x+1;y-5\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
tự lập bảng, tương tự với mấy bài khác chỉ khác nó có điều kiện thì xét nó rồi kết luận nhé!
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
a)\(\left(6x^2-3xy^2\right)+M=^2+y^2-2y^2\)
\(\Rightarrow M=\left(x^2+y^2-2xy^2\right)-\left(6x^2-3xy^2\right)\)
\(\Rightarrow M=x^2+y^2-2xy^2-6x^2+3xy^2\)
\(\Rightarrow M=\left(x^2-6x^2\right)+y^2+\left(-2xy^2+3xy^2\right)\)
\(\Rightarrow M=-7x^2+y^2+xy^2\)
b) \(M-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Rightarrow M=\left(5xy+x^2-7y^2\right)+\left(2xy-4y^2\right)\)
\(\Rightarrow M=5xy+x^2-7y^2+2xy-4y^2\)
\(\Rightarrow M=\left(5xy+2xy\right)+x^2+\left(-7y^2-4y^2\right)\)
\(\Rightarrow M=7xy+x^2-11y^2\)
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
a)x.y-3x+y-3=5
x.(y-3)+(y-3)=5
(y-3)(x+1)=5
suy ra (y-3)(x+1) thuộc Ư(5)={-1;1;5;-5}.Ta có bảng sau
y-3 | y | x+1 | x |
1 | 4 | 5 | 4 |
5 | 8 | 1 | 0 |
-1 | 2 | -5 | -6 |
-5 | -2 | -1 | -2 |
Vậy x=4 thì y=4
y=8 thì x=0
y=2 thì x=0
y=2 thì x=-6
y=-2 thì x=-2
b)x.y-y+x=4
y.(x-1)+x=4
y.(x-1)+(x-1)=4-1
x-1.(y+1)=3
suy ra x-1.(y+1) thuộc Ư(3)={-1;1;3;-3}. Ta có bảng sau
x-1 | x | y+1 | y |
1 | 2 | 3 | 2 |
3 | 4 | 1 | 0 |
-1 | 0 | -3 | -4 |
-3 | -2 | -1 | -2 |
Tự kết luận nhé
a)Vì x.y=2=> x,y thuộc Ư(2)={1;2}
Vậy x=1 thì y=2 và ngược lại
Các câu sau tương tự cách làm như câu trên
a, x=1,y=2
b, x=2,y=3
c, x=4,y=4
d, x=5,y=7