giải hộ mình với, cám ơn
tìm giá trị nhỏ nhất của A=a2/a-1 + b2/b-1 ( a>1, b>1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
\(a+b=1\Rightarrow a=\dfrac{1}{2}+x;b=\dfrac{1}{2}+y\left(x+y=0\right)\)
có: \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+b^3+ab=a^2+b^2\\ =\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{1}{2}+y\right)^2=\dfrac{1}{2}+x^2+y^2\ge\dfrac{1}{2}\)
\(\Rightarrow A_{min}=\dfrac{1}{2}\Leftrightarrow x=y=0\Leftrightarrow a=b=\dfrac{1}{2}\)
\(a+b=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow\left(a^2+b^2\right)+2ab=1\)
\(\Rightarrow2ab+2ab\le1\) (do \(a^2+b^2\ge2ab\))
\(\Rightarrow ab\le\dfrac{1}{4}\)
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+2ab+b^3-ab\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+ab\)
\(=1^3-3ab+ab=1-2ab\ge1-2.\dfrac{1}{4}=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)
b: Ta có: \(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
\(=1-3ab+3ab\)
=1