Chứng tỏ rằng : (2^101+2^102+2^103) chia hết (2^98+2^99+2^100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2101+2102+2103
=23(298+299+2100)
=>(2101+2102+2103) chia hết cho (298+299+2100)
Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.
a: \(a=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{101}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{101}\right)⋮3\)
b: \(a=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{100}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{100}\right)⋮7\)
1+2x3+4x5+6x7+...+98+99x100+101x102+103x104+...+998+999x1000
tất cả các số này đều chia hết cho 2
k mình nha
2.3chia hết cho 2
4.5chia hết cho 2
......
999.1000chia hết cho 2
suy ra 2.3+4.5+6.7+....+999.1000 chia hết cho 2
98+988+1=1087 không chia hết cho 2
vậy dãy trên ko chia hết cho 2
tự sửa lại cách trình bày nhé
\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)
\(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)
\(=2^{100}.9.7⋮7\)
Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)
S = (2^ 1+2^ 2 )+(2^ 3+2^ 4 )+...+(2^ 99+2^ 100 )
S = 2.(1+2)+2^ 3 .(1+2)+...+2 ^99 .(1+2)
S = 2.3+2 ^3 .3+...+2 ^99 .3
S = 3.(2+2^ 3+...+2^ 99 ) =>
S chia hết cho 3
S = (2^ 1+2^ 2+2^ 3+2 ^4 )+(2^ 5+2^ 6+2^ 7+2 ^8 )+...+(2^ 97+2^ 98+2^ 99+2 ^100 )
S = 2.(1+2+4+16)+2^ 5 .(1+2+4+16)+...+2^ 97 .(1+2+4+16) S = 2.15+2^ 5 .15+...+2^ 97 .15
S = 15.(2+2^ 5+...+2^ 97 ) =>
S chia hết cho 15
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
Ta có :
\(1.3.5.7.....199\)
\(=\frac{1.2.3.4.5.6.7.....198.199.200}{2.4.6.....198.200}\)
\(=\frac{\left(1.2.3.....99.100\right)\left(101.102.....200\right)}{\left(1.2.3.....99.100\right)\left(2.2.2.....2.2\right)}\)
\(=\frac{101.102.....200}{2.2.....2}\)
\(=\frac{101}{2}.\frac{102}{2}.....\frac{200}{2}\left(đpcm\right)\)
#)Giải :
Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)
\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)
Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)