K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

Dấu "=" xảy ra khi \(x=y=z\)

DD
25 tháng 7 2021

a) \(\left(x+y\right)^2\ge0\Leftrightarrow x^2+y^2\ge-2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2-2xy\)

\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{\left(x-y\right)^2}{4}\)

Dấu \(=\)khi \(x+y=0\Leftrightarrow x=-y\).

b) \(\frac{x^2+y^2+z^2}{4}\ge2\left(xy+yz+zx\right)\)

Câu này có lẽ bạn sai đề rồi nhé. 

6 tháng 1 2018

Áp Dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)

^_^

6 tháng 1 2018

Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)

\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)

+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)

\(\Rightarrow\)ĐPCM 

hên xui thôi -_-

AH
Akai Haruma
Giáo viên
30 tháng 5 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\right)[(x^2+2yz)+(y^2+2xz)+(z^2+2xy)]\geq (1+1+1)^2\)

\(\Leftrightarrow \frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\geq \frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{(x+y+z)^2}=\frac{9}{3^2}=1\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=1$