K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Đường trung tuyến AM

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

góc B=góc C

=>ΔBEM=ΔCFM

b: ΔBEM=ΔCFM

=>BE=CF và ME=MF

AE+EB=AB

AF+FC=AC

mà EB=FC và AB=AC

nên AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

11 tháng 8 2023

a: ΔBEM=ΔCFM

b: AM là trung trực của EF

c: EF//BC

a: XétΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=BC/2=18(cm)

nên AH=24(cm)

13 tháng 3 2016

xin lỗi tôi ko biết

ai mik lại

ai duyệt mình duyệt lại

ai đúng mình dừng lại

chon a,b,c

13 tháng 3 2016

ai tivk vho minh mk khac k lai !

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

 a) xét 2 tg vuông BHA và CKB 
có : BA = BC và 
kéo dài CK cắt AB tại I ta có : g IBK = 90 - g BIK ( do tg IBK vuông tại K ) 
đồng thời tg IBC vuông tại B => g BCK = 90 - g BIK 
==> g IBK = g BCK 
nên tg BHA = tg CKB ==> HB = CK 
b ) 
M là trung điểm của AC => BM vuông góc AC ( t/c tg cân ) 
tg AMB vuông tại M có g MAB = 45 độ nên vuông cân 
=> MA = MB 
tg MKB = tg MHB do có 
MB = MA và BK = AH ( c/m a ) đồng thời 
g MBK = g MAH ( cùng phụ với 2 góc đối đỉnh ở D ) 
==> MK = MH 
g HMK = g HMA + AMK mà gHMK = g KMB ( do 2 tg bàng nhau vừa c/m ) 
nên g HMK = g KMB + g AMK = g AMB = 90 độ 
==> MHK vuông cân 
c) ta có 
đường vuông góc CK < đường xiên CD => CK lớn nhất khi K trùng với D , lúc đó CK = CD 
tuơng tự AH lớn nhất khi H trùng với D , lúc đó AH = AD 
=> tổng lớn nhất khi khi K, H , D trùng nhau 
==> g MAH = 0 độ ( do D thuộc AC) 
nhưng theo c/m b 
g MAH = g MBK ==> g MBK = 0 độ 
==> g MBD = 0 độ nên D trùng với M 
kết luận : để tổng lớn nhất thì nằm ngay vị trí của điểm M 
lúc đó AH + CK = AC