Cho hình chữ nhật ABCD.Gọi I và K lần lượt là trung điểm của các cạnh AB và CD. a. Chứng minh tứ giác AIKD là hình chữ nhật. b.tính diện tích hình chữ nhật AIKD, biết AD=6cm và AB=8cm. Gọi M là giao điểm của AK và DI, N là giao điểm của IK và BK. Chứng minh tứ giác MINK là hình thoi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối AC
tam giác ACD có HA=HD; GC=GD nên HG là đường trung bình của tam giác ACD
=> HG//AC; HG=1/2AC. (1)
Tam giác ABC có EA=EB; FB=FC nên EF là đường trung bình của tam giác ABC
=> EF//AC; EF=1/2AC. (2)
Từ (1) và (2) suy ra HG//EF; HG=EF
Tứ giác EFGH có HG//EF; HG=EF
Vậy EFGH là hình bình hành.
b)* Để hình bình hành EFGH là hình thoi, ta cần có thêm hai cạnh kề bằng nhau.
Giả sử EH=FH mà EH=1/20BD(EA=EB, HA=HD nên EH là đường trung bình của tam giác ABD).
HG=1/2AC(cmt)
nên BD=AC
Vậy để hình bình hành EFGH trở thành hình thoi thì hai đường chéo AC và BD của tứ giác ABCD phải bằng nhau.
* Để hình bình hành EFGH là hình chữ nhật, ta cần có thêm một góc vuông.
Giả sử góc H=90 độ, vì HG//AC(cmt)
HG vuông góc với HE
từ hai điều này suy ra AC cũng vuông góc với HE
lại có HE//BD(cmt)
từ hai điều này lại suy ra AC vuông góc với BD
vậy để hình bình hành EFGH là hình thoi, hai đuognừ chéo AC và BD của tứ giác ABCD phải vuông góc với nhau.
* Để hình bình hành EFGH trở thành hình vuông ta cần có thêm hai cạnh kề bằng nhau và một góc vuông.
Giả sử HE=HG => AC=BD(cmt)
H=90 độ => AC vuông góc với BD(cmt)
vậy để hình bình hành EFGH là hình vuông, hai đuognừ chéo AC và BD của tứ giác ABCD phải bằng nhau và vuông góc với nhau.
a) Cạnh AB là : 12 x 2/3 = 8 (cm)
Diện tích ABCD là : (8 + 12) : 2 x 6 = 60 (cm2)
b) -Xét tam giác ABC đáy AB và DBC đáy CD có chiều cao bằng nhau = 6cm mà đáy AB = 2/3 CD => S_ABC = 2/3 S_DBC.
Vẫn xét 2 tam giác ABC và DBC chung đáy BC vì S_ABC = 2/3 S_DBC => chiều cao AK = 2/3 DH.
-Xét tam giác AMC và DMC chung đáy MC mà chiều cao AK = 2/3 DH => S_AMC = 2/3 S_DMC. Mà S_DMC lớn hơn S_AMC là : 12 x 6 : 2 = 36 (cm2)
S_AMC là : 36 : (3-2) x 2 = 72 (cm2) (Toán Hiệu - Tỉ)
Xét tam giác AMC đáy AM, chiều cao CD => AM = 72 x 2 : 12 = 12 (cm)
mk trả lời đầu tiên nhớ k cho mk nha!!!..
a) Xét ΔABD có
H là trung điểm AD
E là trung điểm AB
=> HE là đường trung bình ΔABD
=> HE//BD và HE = 1/2 BD (1)
CMTT => GF // BD và GF = 1/2 BD (2)
Từ (1) và (2) => HEFG là hình bình hành.
b) Để EFGH là hình chữ nhật
<=> HE = HG. Mà HE = 1/2 BD
HG = 1/2 AC
<=> BD = AC
Vậy khi hai đường chéo AC và BD của tứ giác ABCD bằng nhau thì EFGH là hình chữ nhật.
Giúp mình với.
a: Xét tứ giác AIKD có
AI//KD
AI=KD
Do đó: AIKD là hình bình hành
mà \(\widehat{IAD}=90^0\)
nên AIKD là hình chữ nhật
b: \(AI=\dfrac{AB}{2}=4\left(cm\right)\)
\(S_{AIKD}=AD\cdot AI=6\cdot4=24\left(cm^2\right)\)
c: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
Suy ra: AI//CK và AI=CK(1)
hay MK//IN
Xét tứ giác IBCK có
IB//KC
IB=KC
Do đó: IBCK là hình bình hành
Suy ra: Hai đường chéo IC và BK cắt nhau tại trung điểm của mỗi đường
hay N là trung điểm chung của IC và BK
Ta có: AIKD là hình chữ nhật
mà M là giao điểm của hai đường chéo AK và ID
nên M là trung điểm chung của AK và ID; AK=ID
=>IM=MK
Xét ΔABK có
I là trung điểm của AB
N là trung điểm của BK
Do đó: IN là đường trung bình
=>IN//AK và IN=AK/2(2)
Xét ΔIDC có
M là trung điểm của ID
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK=IC/2(3)
Từ (1), (2) và (3) suy ra MK//IN và MK=IN
hay IMKN là hình bình hành
mà IM=MK
nên IMKN là hình thoi