K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bn chỉ cần tính kết quả là được vì nó là phân số ko phải số tự nhiên hihi 66366377377272

29 tháng 3 2016

mẫu chung: 2^6.3.5.7...99

gọi tổng đó là A

A=1+1/2+1/3+...+1/100

A=k1+k2+k3+...+k100/2^6.3.5.7.9...100

ta thấy phân so k^64/64 sẽ bằng có tử bằng: 3.5.7...99. mà các phân số khác có tử đều chẵn (vì các phân số lẻ đều có tử có thừa số 2^6, phân số chẵn sẽ có ít nhất 1 thừa số 2)

=> tử của A lẻ nên ko chia hết cho 2. mà mẫu A=2^6.3.5.7...99 chia hết 2

=> A ko phải số tự nhiên

chị trình bày còn lủng củng. em hiểu rồi trình bày lại nhé

22 tháng 5 2018

Đặt \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

\(\Rightarrow A>1+0=1\)(1)

Ta lại có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1+1-\frac{1}{100}< 2\)(2)

Từ (1) và (2) => 1<A<2

=> A không phải là số tự nhiên

Ta có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{99.100}\)

\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}=1+1-\frac{1}{100}\)\(=\frac{199}{100}< 2\)

Lại có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}>1\)

Nên : \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\)

Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\) ko phải là số tự nhiên 

8 tháng 4 2019

bạn ơi bài này có trong bùi văn tuyên

8 tháng 4 2019

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)

\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

\(A< \frac{99}{100}< 1\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)

1 tháng 5 2019

A = 1/2 - 1/2^2 + 1/2^3 - 1/2^4 + ... + 1/2^2017

2A = 1 - 1/2 + 1/2^2 - 1/2^3 + .... + 1/2^2016

2A + A = 1 + 1/2^2017

=> A = (1 + 1/2^2017) : 3 

ta có

1/12+1/1.2+1/2.3+...+1/2014.2015>A>1/12+1/2.3+1/3.4+..+1/2015.2016

1+1-1/2+1/2-1/3+..+1/2014-1/2015>A>1+1/2-1/3+1/3-1/4+...+1/2015-1/2016

2-1/2015>A>1-1/2016

4029/2015>A>2015/2016

<=>A ko phải là số tự nhiên (đpcm)

13 tháng 5 2016

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2015^2}>1\)

=>A > 1 (1)

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{2015^2}<\frac{1}{2014.2015}\)

=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2014.2015}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2014}-\frac{1}{2015}\)

=>\(A<2-\frac{1}{2015}<2\)  (2)

Từ (1);(2)=>1 < A < 2

=>A không là số tự nhiên (đpcm)