CMR \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)không là số tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)
\(\Rightarrow A>1+0=1\)(1)
Ta lại có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1+1-\frac{1}{100}< 2\)(2)
Từ (1) và (2) => 1<A<2
=> A không phải là số tự nhiên
Ta có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{99.100}\)
\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}=1+1-\frac{1}{100}\)\(=\frac{199}{100}< 2\)
Lại có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}>1\)
Nên : \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\)
Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\) ko phải là số tự nhiên
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}\)
\(A< \frac{99}{100}< 1\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)
ta có
1/12+1/1.2+1/2.3+...+1/2014.2015>A>1/12+1/2.3+1/3.4+..+1/2015.2016
1+1-1/2+1/2-1/3+..+1/2014-1/2015>A>1+1/2-1/3+1/3-1/4+...+1/2015-1/2016
2-1/2015>A>1-1/2016
4029/2015>A>2015/2016
<=>A ko phải là số tự nhiên (đpcm)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2015^2}>1\)
=>A > 1 (1)
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{2015^2}<\frac{1}{2014.2015}\)
=>\(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2014.2015}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2014}-\frac{1}{2015}\)
=>\(A<2-\frac{1}{2015}<2\) (2)
Từ (1);(2)=>1 < A < 2
=>A không là số tự nhiên (đpcm)
bn chỉ cần tính kết quả là được vì nó là phân số ko phải số tự nhiên hihi 66366377377272
mẫu chung: 2^6.3.5.7...99
gọi tổng đó là A
A=1+1/2+1/3+...+1/100
A=k1+k2+k3+...+k100/2^6.3.5.7.9...100
ta thấy phân so k^64/64 sẽ bằng có tử bằng: 3.5.7...99. mà các phân số khác có tử đều chẵn (vì các phân số lẻ đều có tử có thừa số 2^6, phân số chẵn sẽ có ít nhất 1 thừa số 2)
=> tử của A lẻ nên ko chia hết cho 2. mà mẫu A=2^6.3.5.7...99 chia hết 2
=> A ko phải số tự nhiên
chị trình bày còn lủng củng. em hiểu rồi trình bày lại nhé