Giúp mình bài này với ạ
Bài số 3 này á
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(a,A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ P=A:B=\dfrac{\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P\sqrt{x}=m-\sqrt{x}+x\\ \Leftrightarrow x-1=m-\sqrt{x}+x\\ \Leftrightarrow m=\sqrt{x}-1\)
Bài 3:
b: Xét ΔABC có
I là trung điểm của BC
IK//AC
Do đó: K là trung điểm của AB
Xét ΔABC có
I là trung điểm của BC
IH//AB
Do đó: H là trung điểm của AC
Xét ΔABC có
K là trung điểm của AB
H là trung điểm của AC
Do đó: HK là đường trung bình của ΔABC
Suy ra: HK//BC
\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)
\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)
\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)
\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)
\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
cot B = \(\dfrac{5}{13}=>tanB=\dfrac{13}{5}\)
AC=AB.tanB
AC= 15.\(\dfrac{13}{5}\)
AC= 39cm
BC2=AB2+AC2
BC2=225+1521=1746
BC=3 \(\sqrt{194}\)
Bài 3:
a) Ta có: \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)
\(=\sqrt{a}+2-\left(\sqrt{a}+2\right)\)
=0
b) Ta có: \(\dfrac{9-a}{\sqrt{a}+3}-\dfrac{a-6\sqrt{a}+9}{\sqrt{a}-3}\)
\(=3-\sqrt{a}-\sqrt{a}+3\)
\(=6-2\sqrt{a}\)
c) Ta có: \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(=\sqrt{a}-\sqrt{b}-\left(\sqrt{a}-\sqrt{b}\right)\)
=0
d) Ta có: \(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\)
\(=a+\sqrt{ab}+b+\sqrt{ab}\)
\(=a+2\sqrt{ab}+b\)
Bài 1:
a.
\(\frac{4\sqrt{5}+\sqrt{15}}{\sqrt{5}}=\frac{\sqrt{5}(4+\sqrt{3})}{\sqrt{5}}=4+\sqrt{3}\)
$\frac{7-\sqrt{7}}{3\sqrt{7}}=\frac{\sqrt{7}(\sqrt{7}-1)}{3\sqrt{7}}=\frac{\sqrt{7}-1}{3}$
\(\frac{4\sqrt{2}-\sqrt{6}}{2\sqrt{3}}=\frac{\sqrt{2}(4-\sqrt{3})}{\sqrt{2}.\sqrt{6}}=\frac{4-\sqrt{3}}{\sqrt{6}}\)
\(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\frac{(3\sqrt{2}-2\sqrt{3})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{\sqrt{6}}{3-2}=\sqrt{6}\)
b.
\(\frac{a-2\sqrt{a}}{\sqrt{a}-2}=\frac{\sqrt{a}(\sqrt{a}-2)}{\sqrt{a}-2}=\sqrt{a}\)
\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}=\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}=1+\sqrt{a}+a\)
\(\frac{a+10\sqrt{a}+25}{\sqrt{a}+5}=\frac{(\sqrt{a}+5)^2}{\sqrt{a}+5}=\sqrt{a}+5\)
\(\frac{a-9}{\sqrt{a}+3}=\frac{(\sqrt{a}-3)(\sqrt{a}+3)}{\sqrt{a}-3}=\sqrt{a}+3\)
\(h=2R\)
\(V=h.\pi R^2=2R.\pi R^2=16\pi\)
\(\Rightarrow R^3=8\Rightarrow R=2\Rightarrow h=4\)
\(S_{tp}=2\pi R^2+2\pi Rh=24\pi\) \(\left(cm^2\right)\)
Bài 1:
a: ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
b: Ta có: \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
mà 12<18
nên \(2\sqrt{3}< 3\sqrt{2}\)
c: Ta có: \(\dfrac{12}{\sqrt{5}-2}=12\sqrt{5}+24\)
d: Ta có: \(\dfrac{24}{2-x}\cdot\sqrt{\dfrac{x^2-4x+4}{36}}\)
\(=\dfrac{24}{2-x}\cdot\dfrac{2-x}{6}\)
=4
Bài 1:
a: =5(x+2y)
b: =(x+y)(5x-7)
Bài 2:
a: \(=\dfrac{1+2}{xy}=\dfrac{3}{xy}\)