Bài 1:Chứng tỏ:
a)1x1/2+1/2x1/3+1/3x1/4+...+1/99x1/100<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+\frac{1}{3}\cdot\frac{1}{4}+...+\frac{1}{79}\cdot\frac{1}{80}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{79\cdot80}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{79}-\frac{1}{80}\)
\(=1-\frac{1}{80}\)
\(=\frac{79}{80}\)
Ta thấy mọi số hạng của A điều lớn hơn 0 nên A>0
Ta có: \(\frac{1}{2\times2}<\frac{1}{1\times2};\frac{1}{3\times3}<\frac{1}{2\times3};\frac{1}{4\times4}<\frac{1}{3\times4};\frac{1}{5\times5}<\frac{1}{5\times6};...;\frac{1}{100\times100}<\frac{1}{99\times100}\)
\(\Rightarrow A<\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)
\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A<1-\frac{1}{100}=\frac{99}{100}\)
Vậy A<1
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}$
$< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}$
a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...
b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
Thay B vào A ta được:
\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy....
c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a
(1-1/2x1/2)x(1-1/3x1/3)x(1-1/4x1/4)x…x(1-1/2007x1/2007) = ( 1 - 1/4 ) x ( 1 - 1/9 ) x ( 1- 1/16) x .....x ( 1 - 1/4028049) = 3/4 x 8/9 x 15/16 x .....x 4028048 / 4028049 = 3 x 8 x 15 x .....x 4028048 / 4 x 9 x 16 x ......x 4028049 = 1 x 3 x 2 x 4 x 3 x 5 x .....x 2006 x 2008 / 2x2 x 3 x3 x 4 x 4 x .....x 2007 x 2007 = ( 1 x 2 x 3 x .....x 2006) x ( 3 x 4 x 5 x .....x 2008) / ( 2 x 3 x 4 x ....x 2007) x ( 2 x 3 x 4 x ....x 2007) = 2008 / 2007 x 2 = 1004 / 2007
Tìm y biết 3 x y x (1/1 x 1/2 + 1/2 x 1/3 + 1/3 x 1/4 + 1/4 x 1/5 + 1/5 x 1/6) = 3/4
Ta thấy: 1/1x1/2 = 1/1-1/2 ; 1/2x1/3 = ½-1/3 ; 1/3x1/4=1/3-1/4 ; 1/4x1/5=1/4-1/5 ; 1/5x1/6=1/5-1/6
Nên
1/1 x 1/2 + 1/2 x 1/3 + 1/3 x 1/4 + 1/4 x 1/5 + 1/5 x 1/6 =
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6 = 1/1-1/6= 5/6
Hay 3 x y x 5/6 = 3/4
y x 15/6 = 3/4
y= 3/4 : 15/6
y = 3/10
sợ sai lắm