K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

là 2 số nguyên tố cùng nhau

23 tháng 3 2016

a)Gọi d là ƯC(2n+1;6n+5) (d thuộc N*)

=>2n+1 chia hết cho d =>6n+6 chia hết cho d

=>6n+5 chia hết cho d

=>6n+6-6n-5 chia hết cho d

=>1 chia hết cho d

=>d=1 =>(2n+1;6n+5)=1

=>đpcm

b)Gọi d là ƯC(3n+2;5n+3) (d thuộc N*)

=>3n+2 chia hết cho d=>15n+10 chia hết cho d

=>5n+3 chia hết cho d =>15n+9 chia hết cho d

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1 =>(3n+2;5n+3)=1

=>đpcm

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

22 tháng 2 2018

Gọi ƯCLN (3n+5;3n+7) = d (d thuộc Z )

\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\left(3n+7\right)-\left(3n+5\right)⋮d\Rightarrow3n+7-3n-5⋮d\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Vì d lớn nhất => d=2 

Vậy ƯCLN (3n+5;3n+7) = 2

12 tháng 1 2017

Gọi \(ƯCLN\left(2n+1,3n+5\right)=d.\) 

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+10⋮d\end{cases}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+3\right)⋮d\Rightarrow7⋮d\Rightarrow d\in\left\{-7;-1;1;7\right\}\)

vậy \(d\in\left\{-7;-1;4;7\right\}\)

12 tháng 1 2017

gọi d \(\in\) ƯC(2n+1;3n+5), d\(\in\)N*

=> 2n+1\(⋮\) d và 3n+5 \(⋮\)d

=>3(2n+1)\(⋮\)d và 2(3n+5)\(⋮\)d.

=>6n+3 \(⋮\)d và 6n+10 \(⋮\)d

=> (6n+10)-(6n+3)\(⋮\)d.

=>7 \(⋮\)d

=> d \(\in\)Ư(7)={1;7}

- xét: 2n+1 \(⋮\)7

=>2n+1+7\(⋮\)7 (vì 7\(⋮\)7)

=>2n+8 \(⋮\)

=>2(n+4)\(⋮\)

=>n+4 \(⋮\)7 ( vì (2;7)=1)

=>n+4=7k ( k\(\in\)N*)

=>n=7k-4.

khi đó: 3n+5=3.(7k-4)+5 = 21k-12+5 =  21k-7 \(⋮\)  7 

vậy ƯCLN của (2n+1 và 3n+5) = 7 khi n=7k-4( k\(\in\)N*)

và ƯCLN của (2n+1 và 3n+5) = 1 khi n khác 7k-4( k\(\in\)N*)

chúc bạn năm mới vui vẻ, k nha. đúng 100% luôn.

9 tháng 7 2016

Gọi d là UCLN của 3n + 5 và 5n + 8

KHi đó: 3n + 5 chia hết cho d và 5n + 8 chia hết cho d

=> 5.(3n + 5) chia hết cho d và 3.(5n + 8) chia hết cho d

=> 15n + 25 chia hết cho d và 15n + 24 chia hết cho d

=> (15n + 25) - ( 15n + 24) chia hết cho d =>  1 chia hết cho d => d = 1

Vậy UCLN (3n + 5;5n + 8) là 1

9 tháng 7 2016

Gọi d là UCLN của 3n + 5 và 5n + 8

KHi đó: 3n + 5 chia hết cho d và 5n + 8 chia hết cho d

=> 5.﴾3n + 5﴿ chia hết cho d và 3.﴾5n + 8﴿ chia hết cho d

=> 15n + 25 chia hết cho d và 15n + 24 chia hết cho d

=> ﴾15n + 25﴿ ‐ ﴾ 15n + 24﴿ chia hết cho d

=> 1 chia hết cho d

=> d = 1 Vậy UCLN ﴾3n + 5;5n + 8﴿ là 1

16 tháng 11 2017

a) gọi ƯCLN( 3n+13; 3n+14) = d \(\Rightarrow\hept{\begin{cases}3n+13⋮d\\3n+14⋮d\end{cases}\Rightarrow\left(3n+14\right)-\left(3n+13\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

b)  \(\)sai đề

vì \(3n+15=3\left(n+5\right)⋮3\)\(6n+9=3\left(2n+3\right)⋮3\)

nên có ƯC( 3n+15; 6n+9)=3

16 tháng 11 2017

a) Gọi d là ước chung nguyên tố của 3n + 13 và 3n + 14    

=> 3n + 13 chia hết cho d ; 3n + 14 chia hết cho d

=> ( 3n+ 14 ) - ( 3n + 13 ) chia hết cho d

=> 1 chia hết cho d 

=>d = 1  ( vì d là ƯCLN )

=> ƯCLN ( 3n + 13, 3n + 14 )

Vậy ƯCLN ( 3n + 13, 3n + 14 ) = 1

( câu b mình thấy sai sai thế nào ấy, bạn xem lại đề nhé )

3 tháng 11 2023

1, Gọi ước chung lớn nhất của (3n + 5; 6n + 9)  là d ta có

               \(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\)

           ⇒  \(\left\{{}\begin{matrix}2.\left(3n+5\right)⋮d\\6n+9⋮d\end{matrix}\right.\)

           ⇒ \(\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)

           6n + 10 - (6n + 9) ⋮ d

          6n + 10 - 6n - 9  ⋮ d

                                 1 ⋮ d 

⇒ d = 1

Vậy ƯCLN(3n + 5; 6n + 9) = 1 (đpcm)

3 tháng 11 2023

2,  ƯCLN(3n + 13; 3n + 14) = 1

     Gọi ước chung lớn nhất của 3n + 13 và 3n + 14 là d 

Ta có: \(\left\{{}\begin{matrix}3n+13⋮d\\3n+14⋮d\end{matrix}\right.\)

          ⇒ 3n + 14 - (3n + 13) ⋮ d

              3n + 14 - 3n - 13 ⋮ d

                                     1  ⋮ d

                                       d = 1

ƯCLN(3n + 13; 3n + 14) = 1 (đpcm)

 

     

2 tháng 12 2017

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

9 tháng 8 2018

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

11 tháng 9 2016

Gọi d là ƯCLN  của 3n + 5 và 6n + 9 (d thuộc N)

Khi đó : 3n + 5 chia hết cho d và 6n + 9 chia hết cho d

<=> 2.(3n + 5) chia hết cho d và 6n + 9 chia hết cho d

=> 6n + 10 chia hết cho d và 6n + 9 chia hết cho d

=> (6n + 10) - (6n + 9) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN ( 3n + 5; 6n + 9) = 1 (đpcm)

16 tháng 11 2017

Bạn kia làm đúng rồi^_^