tìm số tự nhiên a để phân số \(P=\frac{11a-47}{2a-9}\)
có giá trị lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9
tk mình đi xin cậu đấy tk nha nha nha nha nha nha nha nha
Ta có: 2a+1/a-3 = (2a-6)+7/a-3 = 2a-6/a-3 + 7/a-3 = 2 + 7/a-3
Đẻ phân số có GTLN thì 7/a-3 có giá trị lớn nhất
=> a-3 phải có giá trị nhỏ nhất
=> a-3 = 1 (vì a-3 \(\ge\) 0 và a \(\in\) N)
=> a = 4
\(\frac{2a+1}{a-3}=\frac{2\left(a-3\right)+7}{a-3}=2+\frac{7}{a-3}\)
Nếu \(0\le a< 3\Rightarrow a-3< 0;2a+1>0\Rightarrow\frac{a-3}{2a+1}< 0\)
Nếu \(a\ge4\Rightarrow\frac{2a+1}{a-3}\le2+\frac{7}{4-3}=9\)
Đẳng thức xảy ra tại a=4
ta có
\(2P=\frac{22a-94}{2a-9}=\frac{11\left(2a-9\right)+5}{2a-9}=11+\frac{5}{2a-9}\)
vậy P lớn nhất khi \(\frac{5}{2a-9}\) lớn nhất hay \(2a-9\) là dương và bé nhất
khi đó \(2a-9=1\Leftrightarrow a=5\)