K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

bn đặt x^2+x+4 là a rồi biểu diễn theo a là được

x⁴ + 5x³ + 12x² + 20x + 16 = 0 

Nhận xét: vì 16/1 = (20/5)² ⇒ đây là pt đối xứng. Vì x = 0 không là nghiệm của pt nên chia 2 vế của pt cho x²⇒pt trở thành: 

⇔x² + 5x + 12+ 20/x + 16/x² = 0 

⇔(x²+ 16/x²) +5(x+4/x) + 12 = 0 

đặt x+4/x = t ⇒ t² = x²+ 8 + 16/x² 

⇒ t² -8 + 5t + 12 = 0 

⇔ t² + 5t + 4 = 0 

┌t = -1 ⇒ x+4/x = -1 ⇔x²+x + 4 = 0 ( phương trình vô nghiệm) 
└t=-4 ⇒ x+4/x = -4 ⇔ x²+ 4x + 4 = 0 ⇔ x =-2 

Vậy phương trình có 1 nghiệm duy nhất x=-2

tích mình để tiểu học vui

NV
25 tháng 3 2023

ĐKXĐ: \(x\ne0\)

Phương trình tương đương:

\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)

Đặt \(4x-10+\dfrac{7}{x}=t\)

\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)

\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 2 2020

hiu hiu

22 tháng 4 2020

help me !!!!

DD
6 tháng 11 2021

\(\frac{x}{x^2+9x+2019}=\frac{x^2+10x+2019}{x^2+8x+2019}\)

Ta thấy \(0\)không thỏa mãn phương trình trên. 

Với \(x\ne0\)phương trình tương đương với: 

\(\frac{1}{x+9+\frac{2019}{x}}=\frac{x+10+\frac{2019}{x}}{x+8+\frac{2019}{x}}\)

\(\Leftrightarrow\frac{1}{t+9}=\frac{t+10}{t+8}\)(\(t=x+\frac{2019}{x}\))

\(\Rightarrow\left(t+10\right)\left(t+9\right)=t+8\)

\(\Leftrightarrow t^2+18t+82=0\)

\(\Leftrightarrow\left(t+9\right)^2+1=0\)(vô nghiệm) 

Vậy phương trình đã cho vô nghiệm. 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

\(a,x+\frac{4}{5}-x+4=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x=\frac{x}{3}-x-1\)

\(x+\frac{24}{5}-x-\frac{x}{3}+x+1=0\)

\(x+\frac{29}{5}-\frac{x}{3}=0\)

\(x-\frac{1}{3}x=-\frac{29}{5}\)

\(\frac{2}{3}x=-\frac{29}{5}\)

\(x=-\frac{87}{10}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

22 tháng 6 2020

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)