K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

ABCNMHKIDE

a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)

mà có MB = MC (do M là TĐ của BC)

=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)

=> BI = CK ( 2 canh t.ư)

+) tam giác BCK = CBI ( vì:  BC chung; góc BCK = góc CBI; CK = BI)

=> BK = CI (2 cạnh t.ư)

và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI

b) Gọi E là trung điểm của MC 

xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2

Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2

Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC 

vậy KN < MC

c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK 

    +)  Nếu AI = IM  mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM 

mặt khác, BI vuông góc với AM 

=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B

=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)

=> tam giác BAM đều => góc BAM = 60o

    +) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK 

=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)

=> IA = KD 

=> nếu AI = IM => AI = IM = MK = KD

vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o

d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB  do đối đỉnh; MC = MB)

=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC

lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD

+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm

5 tháng 1 2020

B A C D E F I

Gọi I là tâm của ABCD.
Ta có:
\(\widehat{IFE}+\widehat{IFA}=90^0\) 
\(\widehat{ICB}+\widehat{CBI}=90^0\)
Mặt khác: \(\widehat{IFA}=\widehat{BDA}=\widehat{CBI}\)
=> \(\widehat{IFE}=\widehat{ICB}\)
=> IFCE nội tiếp.
=> ^EFC = ^EIC = ^ECI = 900 - CBI = 650
=> ^DFC = 1800 - ^EFC = 1150

Vậy \(\widehat{DFC}=115^0\)

17 tháng 12 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DE//AC
Do đó; E là trung điểm của AB

Xét ΔBAC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

Xét tứ giác ADBM có

E là trung điểm chung của AB và DM

=>ADBM là hình bình hành

c: Xét tứ giác ADCN có

F là trung điểm chung của AC và DN

=>ADCN là hình bình hành

=>AN//CD và AN=CD

Ta có: ADBM là hình bình hành

=>AM//BD và AM=BD

Ta có: AN//CD

AM//BD

mà B,D,C thẳng hàng

nên AN//BC và AM//BC

mà AN,AM có điểm chung là A

nên N,A,M thẳng hàng

Ta có: AM=BD

AN=CD

mà BD=DC

nên AM=AN

mà M,A,N thẳng hàng

nên A là trung điểm của MN

17 tháng 12 2023

cảm ơn bạn

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

17 tháng 10 2022

Bài 3: 

a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có

CD=BC

CF=BE

Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE

=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ

=>CE vuông góc với DF

b: Gọi Klà trung điểm của CD và N là giao của AK và DF

Xét tứ giác AECK có

AE//CK

AE=CK

Do dó: AECK là hình bình hành

SUy ra: AK=CE và AK//CE

=>AK vuông góc với DF

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

Xét ΔAMD có

AN vừa là đường cao, vừa là đường trung tuyến

nên ΔAMD cân tại A

3 tháng 5 2016

2 hoặc 3