Chứng minh rằng
1/2^2+1/3^2+1/4^2+1/5^2+.....+1/100^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Ta có\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.....
\(\frac{1}{100^2}< \frac{1}{99.100}\)
cộng các vế trái và vế phải với nhau ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Ta có tổng vế phải là
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\left(dpcm\right)\)
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)
\(\RightarrowĐPCM\)
bạn cho mình hỏi sao lại biến đổi thành 1/2.3+...
trong khi nó là 1/3^2+... cơ mà
Gọi tổng đó là A
A = 1/2.2 + 1/3.3 +....+1/100.100
A < 1/1.2 + 1/2.3 +.....+ 1/99.100
A < 1 - 1/2 + 1/2 - 1/3 +.....+ 1/99 - 1/100
A < 1-1/100
A < 99/100 < 1
=> A < 1 (đpcm)
**** mk nha các bạn!