K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Gọi tổng đó là A

A = 1/2.2 + 1/3.3 +....+1/100.100

A < 1/1.2 + 1/2.3 +.....+ 1/99.100

A < 1 - 1/2 + 1/2 - 1/3 +.....+ 1/99 - 1/100

A < 1-1/100

A < 99/100 < 1

=> A < 1 (đpcm)

**** mk nha các bạn!

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

2 tháng 3 2017

Ta có\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}\)

cộng các vế trái và vế phải với nhau ta được

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

Ta có tổng vế phải là

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1\left(dpcm\right)\)

\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)

\(\RightarrowĐPCM\)

22 tháng 4 2017

bạn cho mình hỏi sao lại biến đổi thành 1/2.3+...

trong khi nó là 1/3^2+... cơ mà