K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

a, Đặt A =  \(\frac{6n-4}{2n-5}\)

Để A là số nguyên : 

\(6n-4⋮2n-5\Leftrightarrow3\left(2n-5\right)+11⋮2n-5\)

\(\Leftrightarrow11⋮2n-5\Rightarrow2n-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

2n - 51-111-11
2n6416-6
n328-3

tương tự với b ; c nhé 

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

23 tháng 6 2021

`a in ZZ`

`=>6n-4 vdots 2n+1`

`=>3(2n+1)-7 vdots 2n+1`

`=>7 vdots 2n+1`

`=>2n+1 in Ư(7)={+-1,+-7}`

`=>2n in {0,-2,6,-8}`

`=>n in {0,-1,3,-4}`

`b in ZZ`

`=>3n+2 vdots 4n-4`

`=>12n+8 vdots 4n-4`

`=>3(4n-4)+20 vdots 4n-4`

`=>20 vdots 4n-4`

`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`

`=>4n-4 in {+-4,+-20}`

`=>n-1 in {+-1,+-5}`

`=>n in {0,2,6,-4}`

`c in ZZ`

`=>4n-1 vdots 3-2n`

`=>2(3-2n)-7 vdots 3-2n`

`=>7 vdots 3-2n`

`=>3-2n in Ư(7)={+-1,+-7}`

`=>2n in {4,0,-4,10}`

`=>n in {2,0,-2,5}`

23 tháng 6 2021

a) đk: \(n\ne\dfrac{-1}{2}\)

Để \(\dfrac{6n-4}{2n+1}\) nguyên

<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên

<=> \(3-\dfrac{7}{2n+1}\) nguyên

<=> \(7⋮2n+1\)

Ta có bảng 

2n+11-17-7
n0-13-4
 tmtmtmtm

 

b)đk: \(n\ne1\)

Để \(\dfrac{3n+2}{4n-4}\) nguyên

=> \(\dfrac{3n+2}{n-1}\) nguyên

<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên

<=> \(3+\dfrac{5}{n-1}\) nguyên

<=> \(5⋮n-1\)

Ta có bảng: 

n-11-15-5
n206-4
Thử lạitmloạitm

loại

 

c) đk: \(n\ne\dfrac{3}{2}\)

Để \(\dfrac{4n-1}{3-2n}\) nguyên

<=> \(\dfrac{4n-1}{2n-3}\) nguyên

<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên

<=> \(2+\dfrac{5}{2n-3}\) nguyên

<=> \(5⋮2n-3\)

Ta có bảng: 

2n-31-15-5
n214-1
 tmtmtmtm

 

14 tháng 5 2017

Đề A đạt giá trị nguyên

=> 3n + 9 chia hết cho n - 4

3n - 12 + 12 + 9 chia hết cho n - 4

3.(n - 4) + 2c1 chia hết cho n - 4

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

Thay n - 4 vào các giá trị trên như

n - 4 = 1

n - 4 = -1

....... 

Ta tìm được các giá trị : 

n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}

14 tháng 5 2017

a) Để A thuộc Z           (A nguyên)

=> 3n+9 chia hết cho n-4

hay 3n+9-12+12 chia hết cho n-4                   (-12+12=0)

      3n-12+9+12 chia hết cho n-4

     3n-12+21 chia hết cho n-4

     3(n-4)+21 chia hết cho n-4

Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4

mà Ư(21)={21;1;7;3} nên ta có bảng:

n-421137
n25 (tm)5 (tm)7 (tm)11 (tm)

Vậy n={25;5;7;11} thì A nguyên.

b)

Để B thuộc Z           (B nguyên)

=> 6n+5 chia hết cho 2n-1

hay 6n+5-3+3 chia hết cho 2n-1                   (-3+3=0)

      6n-3+5+3 chia hết cho 2n-1

     6n-3+8 chia hết cho 2n-1

     3(2n-1)+8 chia hết cho 2n-1

Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1

mà Ư(8)={8;1;2;4} nên ta có bảng:

2n-18124
n4.5 (ktm)1 (tm)1.5 (ktm)2.5 (ktm)

Vậy, n=1 thì B nguyên.

7 tháng 2 2016

Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }

3n - 1- 1  1    - 2   2    - 3  3   - 6  6   - 1212  
3n02- 13- 24- 57- 1113
n02/3- 1/31- 2/34/3- 5/37/3- 11/313/3


Thỏa mãn đề bài n { 0; 1 }

Các ý khác làm tương tự
 

 

7 tháng 2 2016

Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên

Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1

Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1

=> 3n+1 thuộc Ước của 5

=> 3n+1 thuộc {-5;-1;1;5}

=> n thuộc {-2;-2/3;0;4/3}

23 tháng 8 2021

cứu mik vớiiiiiiiiii

23 tháng 8 2021

a. ĐK : \(n\ne-4\) 

\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)

\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n + 41-13-3
n-3-5-1-7

b, ĐK : \(n\ne-1\)

 \(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n + 11-12-24-4
n0-21-33-5

c,ĐK : \(n\ne\frac{1}{2}\) 

\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

2n - 11-12-24-48-8
n103/2(loại)-1/2(loại)5/2(loại)-3/2(loại)9/2(loại)-7/2(loại)
10 tháng 5 2015

A=\(\frac{3n+4}{n-1}\)=\(\frac{3\left(n-1\right)+7}{n-1}\)=3+\(\frac{7}{n-1}\)

Để A nghuyên thì \(\frac{7}{n-1}\)nguyên => n-1 \(\in\)ƯC(7)=\(\left\{1;-1;7;-7\right\}\)

=>n\(\in\)\(\left\{2;0;8;-6\right\}\)

 

B=\(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)=2+\(\frac{-5}{3n+1}\)

=>3n+1\(\in\)ƯC(-5)=\(\left\{-1;1;-5;5\right\}\)

=>n\(\in\)\(\left\{0;-2\right\}\)

23 tháng 6 2016

Toán lớp 7

23 tháng 6 2016

Toán lớp 7

vậy để B nguyên thì n\(\in\) {-17;-3;1;3;5;7;11;25}