tìm 2 số tự nhiên
có tích bằng 2700, BCNN=900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,3 và 900
b,900 va 10
là đúng nhất đó vì 2700:900=3:con9000:900=10
a) Gọi hai số tự nhiên cần tìm là a và b.
Ta có: ab = 2700 và [a,b] = 900
Ta có tính chất: (a,b).[a,b] = ab
=> (a,b). 900 = 2700
=> (a,b) = 2700 : 900
=> (a,b) = 3
=> a = 3m và b = 3n [(m,n) = 1]
=> ab = 3m.3n = 9mn = 2700
=> mn = 2700 : 9
=> mn = 300
Mà (m,n) = 1 nên m = 1 và n = 300 hoặc ngược lại.
=> a = 3, b = 900 hoặc a = 900 , b = 3
b) Gọi hai số tự nhiên cần tìm là a và b.
Ta có: ab = 9000 và [a,b] = 900
Ta có tính chất: (a,b).[a,b] = ab
=> (a,b). 9000 = 2700
=> (a,b) = 2700 : 9000
=> Không có hai số nào thỏa mãn đề bài.
Lời giải:
Gọi 2 số tự nhiên cần tìm là $a$ và $b$. Coi $a$ là số lớn hơn. Gọi $d$ là ƯCLN của $a,b$. Khi đó, đặt:
$a=dx, b=dy$ thì $x,y$ là 2 số nguyên tố cùng nhau và $x>y$
BCNN $(a,b)=dxy$. Ta có:
$ab=dx.dy=d^2xy=2700$
$dxy=900(1)$
$\Rightarrow d=(d^2xy):(dxy)=2700:900=3$
Thay vào $(1)$ suy ra $xy=300=2^2.3.5^2$
Vì $x,y$ nguyên tố cùng nhau và $x>y$ nên: $(x,y)=(300,1); (25,12), (100,3); (75, 4)$
$\Rightarrow (a,b)=(900,3); (75, 36); (300,9); (225, 12)$
a) Gọi hai số tự nhiên cần tìm là a và b.
Ta có: ab = 2700 và [a,b] = 900
Ta có tính chất: (a,b).[a,b] = ab
=> (a,b). 900 = 2700
=> (a,b) = 2700 : 900
=> (a,b) = 3
=> a = 3m và b = 3n [(m,n) = 1]
=> ab = 3m.3n = 9mn = 2700
=> mn = 2700 : 9
=> mn = 300
Mà (m,n) = 1 nên m = 1 và n = 300 hoặc ngược lại.
=> a = 3, b = 900 hoặc a = 900 , b = 3
Nhớ vote nha bn3.
Gọi hai số tự nhiên cần tìm là a và b
a.b=BCNN(a;b).ƯCLN(a;b)
hay 2700= 900.ƯCLN(a;b)
=> ƯCLN(a;b)=3
Vì ƯCLN(a;b)=3 nên a và b chia hết cho 3
Đặt a=3k ; b=3q k,q\(\in\)N và ƯCLN(k;q)=1
a.b=2700
hay 3k.3q=2700
=> 3.3.k.q=2700
=> 9.k.q=2700
=> k.q=300
SO TO QUA BAN AK XEM LAI DE DI
trong sách nâng cao và phát triển toán 6 tập 1 ở bài 328 trang 85