K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 y² + 2(x² + 1) = 2xy - 2y 
<=> 2y² + 4(x² + 1) = 4xy - 4y 
<=> 2y² + 4x² + 4 - 4xy + 4y = 0 
<=> (4x² - 4xy + y²) + (y² + 4y + 4) = 0 
<=> [(2x)² - 2.2x.y + y²] + (y² + 2.y.2 + 4) = 0 
<=> (2x - y)² + (y + 2)² = 0 
(2x - y)² ≥ 0 
(y + 2)² ≥ 0 
=> (2x - y)² + (y + 2)² ≥ 0 
Dấu "=" khi (2x - y)² = 0 và (y + 2)² = 0 
<=> 2x - y = 0 và y + 2 = 0 
<=> 2x = y và y = - 2 
<=> x = - 1 và y = - 2 
Để thỏa mãn phương trình thì dấu "=" xảy ra 
Vậy phương trình có nghiệm x = - 1 và y = - 2

27 tháng 3 2016

dang tuan anh giải sai kìa,copy trên mạng đúng ko?

13 tháng 10 2019

a) \(xy+x-y=2\)

\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)

\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)

b) \(x-2xy+y=0\)

\(\Leftrightarrow2x-4xy+2y=0\)

\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Tương tự nha

13 tháng 10 2019

c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

8 tháng 3 2023

a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0               =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8                 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8           Ta có bảng sau :

2y-4 1 8 2 4 -1 -8 -2 -4
2x+1 8 1 4 2 -8 -1 -4 -2
y(yϵ\(ℤ\)) 5/2(loại ) 6(thỏa mãn) 3(loại) 4(loại) 3/2( loại) -2(thỏa mãn) 1( loại) 0(loại )
x(xϵ\(ℤ\)) 7/2(loại) 0(thỏa mãn) 3/2( loại) 1/2( loại) -9/2( loại) -1(thỏa mãn) -5/2( loại) -3/2( loại)

Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

23 tháng 7 2019

1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2

Do (x - 1)(2x + 1) \(⋮\)2x + 1 

=> 2 \(⋮\)2x + 1

=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}

Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}

+) 2x + 1 = 1 => 2x = 0 => x = 0

+) 2x + 1 = -1 => 2x = -2 => x = -1

b) 2x + y + 2xy - 3 = 0

=> 2x(1 + y) + (1 + y) = 4

=> (2x + 1)(1 + y) = 4

=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}

Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1} 

            => 1 + y \(\in\){4; -4}

Lập bảng : 

    2x + 1     1      -1
    1 + y    4     -4
      x   0     -1
      y   3    -5

Vậy ....

c) x2 + 2xy = 0

=> x(x + 2y) = 0

=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy x = y = 0