cho tam giác ABC vuông tại A. Vẽ AD là p/g góc BAC, DE vuông góc AC
c/m 1/AB + 1/AC = căn 2/AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xet ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF
Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300
Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600
Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.
b) Dễ thấy ^CAM=1800-^BAC=600.
CM // AD => ^ACM=^DAC=1/2^BAC=600
Từ đó suy ra \(\Delta\)ACM là tam giác đều.
c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF
=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD
=> a - b = 1/2AD => AD= 2(a - b).
Vậy .........
a. Do AD là phân giác BAC
=> BAD=CAD=1/2BAC=1/2.120=60*
Xét tam giác AED có
EAD+EDA+AED=180*
60*+EDA+90*=180*
=> EDA=30*
Xét tam giác EAD và tam giác FAD có
AED=AFD=90*
AD chung
EAD=FAD=60*
=> tam giác EAD = tam giác FAD(ch-gn)
=> ED=FD; EDA=FDA=30*
Ta có EDF=EDA+FDA=2EDA=2.30*=60*
Từ ED=FD => tam giác EDF cân tại D
Xét tam giác cân DEF có EDF=60*
=> tam giác DEF là tam giác đều
Bài 1:
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
Ta có: AE+EB=AB
AD+DC=AC
mà AB=AC
và AD=AE
nên EB=DC
Xét ΔEBO vuông tại E và ΔDCO vuông tại D có
EB=DC
\(\widehat{EBO}=\widehat{DCO}\)
Do đó: ΔEBO=ΔDCO
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
DO đó:ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
ko bit thì dừng có trả lời
mình mới học lớp 6 thôi