Cho tam giác vuông ABC có \(\widehat{A}\) = 90o. Kẻ AH vuông góc với BC tại H. Kẻ HD vuông góc với AC tại D và HE vuông góc với AB tại E. Gọi M là trung điểm của HC
a) Chứng minh tứ giác AEHG là hình chứ nhật
b) Gọi N là trung điểm của AE. Gọi O là giao điểm của AH và DE. Chứng minh ba điểm M,O, N thẳng hàng
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật